2,565 research outputs found

    On dynamic spectral risk measures, a limit theorem and optimal portfolio allocation

    Full text link
    In this paper we propose the notion of continuous-time dynamic spectral risk-measure (DSR). Adopting a Poisson random measure setting, we define this class of dynamic coherent risk-measures in terms of certain backward stochastic differential equations. By establishing a functional limit theorem, we show that DSRs may be considered to be (strongly) time-consistent continuous-time extensions of iterated spectral risk-measures, which are obtained by iterating a given spectral risk-measure (such as Expected Shortfall) along a given time-grid. Specifically, we demonstrate that any DSR arises in the limit of a sequence of such iterated spectral risk-measures driven by lattice-random walks, under suitable scaling and vanishing time- and spatial-mesh sizes. To illustrate its use in financial optimisation problems, we analyse a dynamic portfolio optimisation problem under a DSR.Comment: To appear in Finance and Stochastic

    Markov Decision Processes with Risk-Sensitive Criteria: An Overview

    Full text link
    The paper provides an overview of the theory and applications of risk-sensitive Markov decision processes. The term 'risk-sensitive' refers here to the use of the Optimized Certainty Equivalent as a means to measure expectation and risk. This comprises the well-known entropic risk measure and Conditional Value-at-Risk. We restrict our considerations to stationary problems with an infinite time horizon. Conditions are given under which optimal policies exist and solution procedures are explained. We present both the theory when the Optimized Certainty Equivalent is applied recursively as well as the case where it is applied to the cumulated reward. Discounted as well as non-discounted models are reviewe

    On behavioral Arrow Pratt risk process with applications to risk pricing, stochastic cash flows, and risk control

    Get PDF
    We introduce a closed form behavioural stochastic Arrow-Pratt risk process, decomposed into discrete asymmetric risk seeking and risk averse components that run on different local times in ϵ-disks centered at risk free states. Additionally, we embed Arrow-Pratt (“AP”) risk measure in a simple dynamic system of discounted cash flows with constant volatility, and time varying drift. Signal extraction of Arrow-Pratt risk measure shows that it is highly nonlinear in constant volatility for cash flows. Robust identifying restrictions on the system solution confirm that even for small time periods constant volatility is not a measure of AP risk. By contrast, time-varying volatility measures aspects of embedded AP risk. Whereupon maximal AP risk measure is obtained from a convolution of input volatility and idiosyncratic shocks to the system. We provide four applications for our theory. First, we find that Engle, Ng and Rothschild (1990) Factor-ARCH model for risk premia is misspecified because the factor price of risk is time varying and unstable. Our theory predicts that a hyper-ARCH correction factor is required to remove the Factor-ARCH specification. Second, when applied to analysts beliefs about interest rates and volatility, we find that AP risk measure is a feedback control over stochastic cash flows. Whereupon increased risk aversion to negative shocks to earnings increases volatility. Third, we use an oft cited example of Benes, Shepp and Witsenhausen (1980) to characterize a controlled AP diffusion for a conservative investor who wants to minimize the AP risk process for an asset. Fourth, we recover stochastic differential utility functional from the AP risk process and show how it is functionally equivalent to Duffie and Epstein’s (1992) parametrization.behavioural Arrow-Pratt risk process; asymmetric risk decomposition; asset pricing; Markov process; local martingale; local time change
    • …
    corecore