1,355 research outputs found

    Impact of Link Parameters and Channel Correlation on the Performance of FSO Systems With the Differential Signaling Technique

    Get PDF
    We investigate the effects of link parameters and the channel correlation coefficient on the detection threshold, Q-factor, and bit-error-rate (BER) of a free-space optical system employing a differential signaling scheme. In systems employing differential signaling schemes, the mean value of the signal is used as the detection threshold level, provided that differential links are identical or highly correlated. However, in reality, the underlying links are not essentially identical and have a low level of correlation. To show the significance of the link parameters as well as the correlation coefficient, we derive analytical relations describing the effect of weak turbulence and we determine the improvement of Q-factor with the channel correlation. Further, for the same signal-to-noise ratio, we demonstrate that a link with a higher extinction ratio offers improved performance. We also propose a closed-form expression of the system BER. We present experimental results showing improved Q-factor for the correlated channel case compared to the uncorrelated channel

    Differential Signalling in Free-Space Optical Communication Systems

    Get PDF
    In this paper, we review the differential signalling technique and investigate its implementation of in free-space optical (FSO) communication systems. The paper is an extended version of our previous works, where the effects of background noise, weak turbulence and pointing errors (PEs) were investigated separately. Here, for the first time, we present a thorough description of the differential signalling scheme including for combined effects. At first, we present an extension of the analysis of differential signalling to the case of moderate to strong atmospheric turbulence. Next, we investigate a more general case where both channel turbulence and PEs are taken into consideration. We provide closed-form expressions for the optimal detection threshold and the average bit-error-rate, and present a set of numerical results to illustrate the performance improvement offered by the proposed differential signalling under various turbulence and PEs conditions

    Space Time Coding Over a Multiple-Channel Free Space Optical Link

    Get PDF
    Free space optical (FSO) communications in the atmosphere are characterized by additive white Gaussian noise (AWGN) and turbulent fading. We propose a combination of spatial and temporal forward error correction (FEC) coding to instantaneously correct for long-duration fades over a multiple channel link. We simulate this over a turbulent channel and identify the probability of outage of such a channel as the most significant channel parameter

    Saturation in cascaded optical amplifier free-space optical communication systems

    Get PDF
    The performance of a free-space optical (FSO) communication system in a turbulent atmosphere employing an optical amplifier (OA) cascade to extend reach is investigated. Analysis of both single and cascaded OA FSO communication links is given and the implications of using both adaptive (to channel state) and non-adaptive decision threshold schemes are analysed. The benefits of amplifier saturation, for example in the form of effective scintillation reduction when a non-adaptive decision threshold scheme is utilised at the receiver for different atmospheric turbulence regimes, are presented. Monte Carlo simulation techniques are used to model the probability distributions of the optical signal power, noise and the average bit error rate due to scintillation for the cascade. The performance of an adaptive decision threshold is superior to a non-adaptive decision threshold for both saturated and fixed gain preamplified receivers and the ability of a saturated gain OA to suppress scintillation is only meaningful for system performance when a non-adaptive decision threshold is used at the receiver. An OA cascade can be successfully used to extend reach in FSO communication systems and specific system implementations are presented. The optimal cascade scheme with a non-adaptive receiver would use frequent low gain saturated amplification

    State–of–the–art report on nonlinear representation of sources and channels

    Get PDF
    This report consists of two complementary parts, related to the modeling of two important sources of nonlinearities in a communications system. In the first part, an overview of important past work related to the estimation, compression and processing of sparse data through the use of nonlinear models is provided. In the second part, the current state of the art on the representation of wireless channels in the presence of nonlinearities is summarized. In addition to the characteristics of the nonlinear wireless fading channel, some information is also provided on recent approaches to the sparse representation of such channels

    Introduction to free space optical (FSO) communications

    Get PDF
    The demand for high bandwidth and secure communication is increasing. Free space optical (FSO) wireless communications technology could be one possible alternative option to the RF technologies that can be adopted in certain applications to unlock the bandwidth bottleneck issue, specifically in the last mile access networks, between mobile base stations in RF cellular wireless networks, and for radio over fiber; and over the last decade, we have seen growing research and development activities in FSO communications in the field of high data rate wireless technology applications as well as the emergence of commercial systems

    Relay-assisted free-space optical communication

    Full text link
    corecore