38 research outputs found

    Wireless broadband access: WiMAX and beyond - Investigation of bandwidth request mechanisms under point-to-multipoint mode of WiMAX networks

    Get PDF
    The WiMAX standard specifies a metropolitan area broadband wireless access air interface. In order to support QoS for multimedia applications, various bandwidth request and scheduling mechanisms are suggested in WiMAX, in which a subscriber station can send request messages to a base station, and the base station can grant or reject the request according to the available radio resources. This article first compares two fundamental bandwidth request mechanisms specified in the standard, random access vs. polling under the point-to-multipoint mode, a mandatory transmission mode. Our results demonstrate that random access outperforms polling when the request rate is low. However, its performance degrades significantly when the channel is congested. Adaptive switching between random access and polling according to load can improve system performance. We also investigate the impact of channel noise on the random access request mechanism

    Performance analysis of contention based bandwidth request mechanisms in WiMAX networks

    Get PDF
    This article is posted here with the permission of IEEE. The official version can be obtained from the DOI below - Copyright @ 2010 IEEEWiMAX networks have received wide attention as they support high data rate access and amazing ubiquitous connectivity with great quality-of-service (QoS) capabilities. In order to support QoS, bandwidth request (BW-REQ) mechanisms are suggested in the WiMAX standard for resource reservation, in which subscriber stations send BW-REQs to a base station which can grant or reject the requests according to the available radio resources. In this paper we propose a new analytical model for the performance analysis of various contention based bandwidth request mechanisms, including grouping and no-grouping schemes, as suggested in the WiMAX standard. Our analytical model covers both unsaturated and saturated traffic load conditions in both error-free and error-prone wireless channels. The accuracy of this model is verified by various simulation results. Our results show that the grouping mechanism outperforms the no-grouping mechanism when the system load is high, but it is not preferable when the system load is light. The channel noise degrades the performance of both throughput and delay.This work was supported by the U.K. Engineering and Physical Sciences Research Council (EPSRC) under Grant EP/G070350/1 and by the Brunel University’s BRIEF Award

    Performance Study of Bandwidth Request Mechanisms in IEEE 802.16e Networks

    Get PDF
    WiMAX (Worldwide Interoperability for Microwave Access) is the IEEE 802.16 standards-based wireless technology that provides fixed and mobile Internet access for Metropolitan Area Networks (MAN). The IEEE 802.16 std. includes medium access control (MAC) and physical (PHY) layer pecifications and is consider to be a promising technology. Bandwidth reservation is employed to provide quality of service (QoS) to guarantee different services specified in the standard. A bandwidth request/grant scheme is defined in the IEEE 802.16 standard. There are two types of bandwidth request (BR) mechanisms, i.e., polling and contention resolution, which are defined in the standard. As specified, connections belonging to scheduling classes of extended real-time polling service, non-real-time polling service, and best effort have options to make BRs via both mechanisms, depending on the scheduling decision made by the base station (BS). This paper attempts the comparative study of BR mechanisms for different service classes defined in the standard

    Connection admission control and packet scheduling for IEEE 802.16 networks

    Get PDF
    Includes bibliographical references.The IEEE 802.16 standard introduced as one of the Wireless Metropolitan Area Networks (WMAN) for Broadband Wireless Access (BWA) which is known as Worldwide Interoperability for Microwave Access (WiMAX), provides a solution of broadband connectivity to areas where wired infrastructure is economically and technically infeasible. Apart from the advantage of having high speeds and low costs, IEEE 802.16 has the capability to simultaneously support various service types with required QoS characteristics. ... While IEEE 802.16 standard defines medium access control (MAC) and physical (PHY) layers specification, admission control and packet scheduling mechanisms which are important elements of QoS provisioning are left to vendors to design and implement for service differentiation and QoS support

    Performance Evaluation of Connection Admission Control for IEEE 802.16 Networks

    Get PDF
    Quality of Service (QoS) provisioning to the various kinds of network traffic is one of the major design criteria of IEEE 802.16 WiMAX standard. The MAC and physical layers of 802.16 standards are designed to support different types of real time application by providing QoS. Scheduling, Connection Admission Control (CAC) and traffic policing are the major issues to ensure QoS. In standard, scheduling and admission control are kept as open issues. Admission control is the ability of a network to control admission of new traffic based on the availability of resources. As per the specification the CAC considers minimum reserved rate of a connection as an admission criterion, in which the system can admit more connections, but packets of admitted connection may encounter large delays. In this paper average data rate (avg-rate CAC) and maximum sustained rate (max-rate CAC) of the connections are considered as admission criteria in CAC, along with minimum reserved rate (min-rate CAC). The performance of the WiMAX network is evaluated and compared for min-rate, avg-rate and max-rate CAC by considering the performance metrics such as number of connections admitted, throughput and delay using QualNet simulation tool

    A Unified Performance Model for Best-Effort Services in WiMAX Networks

    Get PDF
    Based on the work from the IEEE Working Group 802.16 and ETSI HiperMAN Working Group, the WiMAX (Worldwide Interoperability for Microwave Access) technology is defined by the WiMAX Forum to support fixed and mobile broadband wireless access. In the standard (IEEE 802.16 standard, 2009), it defines several air interface variants, including WirelessMAN-SC, WirelessMAN-OFDM, WirelessMAN-OFDMA and WirelessMAN-HUMAN. WiMAX networks can be operated in two different modes: point to multi-point (PMP) mode and mesh mode. Under the PMP mode, all traffics from subscriber stations (SSs) are controlled by the base station. Mesh mode is a distributed architecture where traffics are allowed to route not only between SSs and the base station but also between SSs. In this chapter, we focus on the WirelessMAN-SC air interface operating in the PMP mode. In WiMAX networks, quality of service (QoS) is provided through five different services classes in the MAC layer (Andrews et al., 2007): 1. Unsolicited grant service (UGS) is designed for real-time applications with constant data rate. These applications always have stringent delay requirement, such as T1/E1. 2. Real-time polling service (rtPS) is designed for real-time applications with variable data rate. These applications have less stringent delay requirement, such as MPEG and VoIP without silence suppression. 3. Extended real-time polling service (ertPS) builds on the efficiency of both UGS and rtPS. It is designed for the applications with variable data rate such as VoIP with silence suppression. 4. Non-real-time polling service (nrtPS) is designed to support variable bit rate non-real-time applications with certain bandwidth guarantee, such as high bandwidth FTP. 5. Best effort service (BE) is designed for best effort applications such as HTTP. To meet the requirements of different service classes, several bandwidth request mechanisms have been defined, namely, unsolicited granting, unicast polling, broadcast polling and piggybacking. In this chapter, we present a performance model for services, such as BE service, based on the broadcast polling mechanism which is contention based and requires he SSs to use the truncated binary exponential backoff (TBEB) algorithm (Kwak et al., 2005) to resolve contention

    Analytical and Simulation Studies for Call Admission and Resource Allocation Schemes proposed for WiMAX system

    Get PDF
    Abstract-Quality communication over the wireless channel is now promised because of the advent of the broadband wireless. High speed data access is expected to be provided to subscribers through broadband wireless access. We propose a joint Call Admission Control (CAC) and Bandwidth Allocation (BA) for an IEEE 802.16 based WiMAX system. The presented schemes aim to provide QoS support along with a fair resource allocation algorithm for nrtPS traffic. Two strategies for CAC namely Conservative and Non-Conservative have been proposed. Conservative CAC guarantees the QoS requirements for all classes of traffic but is more restrictive and less efficient than the Non-Conservative CAC. The performance for proposed schemes has been studied through both analytical models and simulations
    corecore