15,154 research outputs found

    Stochastic models and numerical algorithms for a class of regulatory gene networks

    Get PDF
    Regulatory gene networks contain generic modules like those involving feedback loops, which are essential for the regulation of many biological functions. We consider a class of self-regulated genes which are the building blocks of many regulatory gene networks, and study the steady state distributions of the associated Gillespie algorithm by providing efficient numerical algorithms. We also study a regulatory gene network of interest in synthetic biology and in gene therapy, using mean-field models with time delays. Convergence of the related time-nonhomogeneous Markov chain is established for a class of linear catalytic networks with feedback loop

    Markov State Models of gene regulatory networks

    Get PDF

    Stochastic Models and Numerical Algorithms for a Class ofRegulatory Gene Networks

    Get PDF
    Regulatory gene networks contain generic modules, like those involving feedback loops, which are essential for the regulation of many biological functions (Guido etal. in Nature 439:856-860, 2006). We consider a class of self-regulated genes which are the building blocks of many regulatory gene networks, and study the steady-state distribution of the associated Gillespie algorithm by providing efficient numerical algorithms. We also study a regulatory gene network of interest in gene therapy, using mean-field models with time delays. Convergence of the related time-nonhomogeneous Markov chain is established for a class of linear catalytic networks with feedback loop

    Steady-State Analysis of Genetic Regulatory Networks Modelled by Probabilistic Boolean Networks

    Get PDF
    Probabilistic Boolean networks (PBNs) have recently been introduced as a promising class of models of genetic regulatory networks. The dynamic behaviour of PBNs can be analysed in the context of Markov chains. A key goal is the determination of the steady-state (long-run) behaviour of a PBN by analysing the corresponding Markov chain. This allows one to compute the long-term influence of a gene on another gene or determine the long-term joint probabilistic behaviour of a few selected genes. Because matrix-based methods quickly become prohibitive for large sizes of networks, we propose the use of Monte Carlo methods. However, the rate of convergence to the stationary distribution becomes a central issue. We discuss several approaches for determining the number of iterations necessary to achieve convergence of the Markov chain corresponding to a PBN. Using a recently introduced method based on the theory of two-state Markov chains, we illustrate the approach on a sub-network designed from human glioma gene expression data and determine the joint steadystate probabilities for several groups of genes

    Inference of Temporally Varying Bayesian Networks

    Get PDF
    When analysing gene expression time series data an often overlooked but crucial aspect of the model is that the regulatory network structure may change over time. Whilst some approaches have addressed this problem previously in the literature, many are not well suited to the sequential nature of the data. Here we present a method that allows us to infer regulatory network structures that may vary between time points, utilising a set of hidden states that describe the network structure at a given time point. To model the distribution of the hidden states we have applied the Hierarchical Dirichlet Process Hideen Markov Model, a nonparametric extension of the traditional Hidden Markov Model, that does not require us to fix the number of hidden states in advance. We apply our method to exisiting microarray expression data as well as demonstrating is efficacy on simulated test data

    Relative Stability of Network States in Boolean Network Models of Gene Regulation in Development

    Full text link
    Progress in cell type reprogramming has revived the interest in Waddington's concept of the epigenetic landscape. Recently researchers developed the quasi-potential theory to represent the Waddington's landscape. The Quasi-potential U(x), derived from interactions in the gene regulatory network (GRN) of a cell, quantifies the relative stability of network states, which determine the effort required for state transitions in a multi-stable dynamical system. However, quasi-potential landscapes, originally developed for continuous systems, are not suitable for discrete-valued networks which are important tools to study complex systems. In this paper, we provide a framework to quantify the landscape for discrete Boolean networks (BNs). We apply our framework to study pancreas cell differentiation where an ensemble of BN models is considered based on the structure of a minimal GRN for pancreas development. We impose biologically motivated structural constraints (corresponding to specific type of Boolean functions) and dynamical constraints (corresponding to stable attractor states) to limit the space of BN models for pancreas development. In addition, we enforce a novel functional constraint corresponding to the relative ordering of attractor states in BN models to restrict the space of BN models to the biological relevant class. We find that BNs with canalyzing/sign-compatible Boolean functions best capture the dynamics of pancreas cell differentiation. This framework can also determine the genes' influence on cell state transitions, and thus can facilitate the rational design of cell reprogramming protocols.Comment: 24 pages, 6 figures, 1 tabl
    corecore