18,938 research outputs found

    Different approaches to community detection

    Full text link
    A precise definition of what constitutes a community in networks has remained elusive. Consequently, network scientists have compared community detection algorithms on benchmark networks with a particular form of community structure and classified them based on the mathematical techniques they employ. However, this comparison can be misleading because apparent similarities in their mathematical machinery can disguise different reasons for why we would want to employ community detection in the first place. Here we provide a focused review of these different motivations that underpin community detection. This problem-driven classification is useful in applied network science, where it is important to select an appropriate algorithm for the given purpose. Moreover, highlighting the different approaches to community detection also delineates the many lines of research and points out open directions and avenues for future research.Comment: 14 pages, 2 figures. Written as a chapter for forthcoming Advances in network clustering and blockmodeling, and based on an extended version of The many facets of community detection in complex networks, Appl. Netw. Sci. 2: 4 (2017) by the same author

    Coarse-to-Fine Lifted MAP Inference in Computer Vision

    Full text link
    There is a vast body of theoretical research on lifted inference in probabilistic graphical models (PGMs). However, few demonstrations exist where lifting is applied in conjunction with top of the line applied algorithms. We pursue the applicability of lifted inference for computer vision (CV), with the insight that a globally optimal (MAP) labeling will likely have the same label for two symmetric pixels. The success of our approach lies in efficiently handling a distinct unary potential on every node (pixel), typical of CV applications. This allows us to lift the large class of algorithms that model a CV problem via PGM inference. We propose a generic template for coarse-to-fine (C2F) inference in CV, which progressively refines an initial coarsely lifted PGM for varying quality-time trade-offs. We demonstrate the performance of C2F inference by developing lifted versions of two near state-of-the-art CV algorithms for stereo vision and interactive image segmentation. We find that, against flat algorithms, the lifted versions have a much superior anytime performance, without any loss in final solution quality.Comment: Published in IJCAI 201

    Encoding dynamics for multiscale community detection: Markov time sweeping for the Map equation

    Get PDF
    The detection of community structure in networks is intimately related to finding a concise description of the network in terms of its modules. This notion has been recently exploited by the Map equation formalism (M. Rosvall and C.T. Bergstrom, PNAS, 105(4), pp.1118--1123, 2008) through an information-theoretic description of the process of coding inter- and intra-community transitions of a random walker in the network at stationarity. However, a thorough study of the relationship between the full Markov dynamics and the coding mechanism is still lacking. We show here that the original Map coding scheme, which is both block-averaged and one-step, neglects the internal structure of the communities and introduces an upper scale, the `field-of-view' limit, in the communities it can detect. As a consequence, Map is well tuned to detect clique-like communities but can lead to undesirable overpartitioning when communities are far from clique-like. We show that a signature of this behavior is a large compression gap: the Map description length is far from its ideal limit. To address this issue, we propose a simple dynamic approach that introduces time explicitly into the Map coding through the analysis of the weighted adjacency matrix of the time-dependent multistep transition matrix of the Markov process. The resulting Markov time sweeping induces a dynamical zooming across scales that can reveal (potentially multiscale) community structure above the field-of-view limit, with the relevant partitions indicated by a small compression gap.Comment: 10 pages, 6 figure

    Finding Non-overlapping Clusters for Generalized Inference Over Graphical Models

    Full text link
    Graphical models use graphs to compactly capture stochastic dependencies amongst a collection of random variables. Inference over graphical models corresponds to finding marginal probability distributions given joint probability distributions. In general, this is computationally intractable, which has led to a quest for finding efficient approximate inference algorithms. We propose a framework for generalized inference over graphical models that can be used as a wrapper for improving the estimates of approximate inference algorithms. Instead of applying an inference algorithm to the original graph, we apply the inference algorithm to a block-graph, defined as a graph in which the nodes are non-overlapping clusters of nodes from the original graph. This results in marginal estimates of a cluster of nodes, which we further marginalize to get the marginal estimates of each node. Our proposed block-graph construction algorithm is simple, efficient, and motivated by the observation that approximate inference is more accurate on graphs with longer cycles. We present extensive numerical simulations that illustrate our block-graph framework with a variety of inference algorithms (e.g., those in the libDAI software package). These simulations show the improvements provided by our framework.Comment: Extended the previous version to include extensive numerical simulations. See http://www.ima.umn.edu/~dvats/GeneralizedInference.html for code and dat

    Enhancing hyperspectral image unmixing with spatial correlations

    Get PDF
    This paper describes a new algorithm for hyperspectral image unmixing. Most of the unmixing algorithms proposed in the literature do not take into account the possible spatial correlations between the pixels. In this work, a Bayesian model is introduced to exploit these correlations. The image to be unmixed is assumed to be partitioned into regions (or classes) where the statistical properties of the abundance coefficients are homogeneous. A Markov random field is then proposed to model the spatial dependency of the pixels within any class. Conditionally upon a given class, each pixel is modeled by using the classical linear mixing model with additive white Gaussian noise. This strategy is investigated the well known linear mixing model. For this model, the posterior distributions of the unknown parameters and hyperparameters allow ones to infer the parameters of interest. These parameters include the abundances for each pixel, the means and variances of the abundances for each class, as well as a classification map indicating the classes of all pixels in the image. To overcome the complexity of the posterior distribution of interest, we consider Markov chain Monte Carlo methods that generate samples distributed according to the posterior of interest. The generated samples are then used for parameter and hyperparameter estimation. The accuracy of the proposed algorithms is illustrated on synthetic and real data.Comment: Manuscript accepted for publication in IEEE Trans. Geoscience and Remote Sensin

    A Statistical Modeling Approach to Computer-Aided Quantification of Dental Biofilm

    Full text link
    Biofilm is a formation of microbial material on tooth substrata. Several methods to quantify dental biofilm coverage have recently been reported in the literature, but at best they provide a semi-automated approach to quantification with significant input from a human grader that comes with the graders bias of what are foreground, background, biofilm, and tooth. Additionally, human assessment indices limit the resolution of the quantification scale; most commercial scales use five levels of quantification for biofilm coverage (0%, 25%, 50%, 75%, and 100%). On the other hand, current state-of-the-art techniques in automatic plaque quantification fail to make their way into practical applications owing to their inability to incorporate human input to handle misclassifications. This paper proposes a new interactive method for biofilm quantification in Quantitative light-induced fluorescence (QLF) images of canine teeth that is independent of the perceptual bias of the grader. The method partitions a QLF image into segments of uniform texture and intensity called superpixels; every superpixel is statistically modeled as a realization of a single 2D Gaussian Markov random field (GMRF) whose parameters are estimated; the superpixel is then assigned to one of three classes (background, biofilm, tooth substratum) based on the training set of data. The quantification results show a high degree of consistency and precision. At the same time, the proposed method gives pathologists full control to post-process the automatic quantification by flipping misclassified superpixels to a different state (background, tooth, biofilm) with a single click, providing greater usability than simply marking the boundaries of biofilm and tooth as done by current state-of-the-art methods.Comment: 10 pages, 7 figures, Journal of Biomedical and Health Informatics 2014. keywords: {Biomedical imaging;Calibration;Dentistry;Estimation;Image segmentation;Manuals;Teeth}, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6758338&isnumber=636350

    The stability of a graph partition: A dynamics-based framework for community detection

    Full text link
    Recent years have seen a surge of interest in the analysis of complex networks, facilitated by the availability of relational data and the increasingly powerful computational resources that can be employed for their analysis. Naturally, the study of real-world systems leads to highly complex networks and a current challenge is to extract intelligible, simplified descriptions from the network in terms of relevant subgraphs, which can provide insight into the structure and function of the overall system. Sparked by seminal work by Newman and Girvan, an interesting line of research has been devoted to investigating modular community structure in networks, revitalising the classic problem of graph partitioning. However, modular or community structure in networks has notoriously evaded rigorous definition. The most accepted notion of community is perhaps that of a group of elements which exhibit a stronger level of interaction within themselves than with the elements outside the community. This concept has resulted in a plethora of computational methods and heuristics for community detection. Nevertheless a firm theoretical understanding of most of these methods, in terms of how they operate and what they are supposed to detect, is still lacking to date. Here, we will develop a dynamical perspective towards community detection enabling us to define a measure named the stability of a graph partition. It will be shown that a number of previously ad-hoc defined heuristics for community detection can be seen as particular cases of our method providing us with a dynamic reinterpretation of those measures. Our dynamics-based approach thus serves as a unifying framework to gain a deeper understanding of different aspects and problems associated with community detection and allows us to propose new dynamically-inspired criteria for community structure.Comment: 3 figures; published as book chapte
    corecore