161 research outputs found

    An algorithm for controlling packet size in IEEE 802.16e networks

    Get PDF
    This paper proposes an algorithm to be used in IEEE 802.16e networks for adapting MAC PDU size to wireless channel behavior when ARQ is adopted at MAC layer. The algorithm is based on an analytical approach for dynamically evaluating the optimal packet size. The latter is derived from an expression of the ARQ protocol efficiency, obtained by exploiting a finite-state Markov error model which also takes into account Adaptive Modulation/Coding. The effectiveness of the designed algorithm in improving TCP performance has been evaluated

    Wireless broadband access: WiMAX and beyond - Investigation of bandwidth request mechanisms under point-to-multipoint mode of WiMAX networks

    Get PDF
    The WiMAX standard specifies a metropolitan area broadband wireless access air interface. In order to support QoS for multimedia applications, various bandwidth request and scheduling mechanisms are suggested in WiMAX, in which a subscriber station can send request messages to a base station, and the base station can grant or reject the request according to the available radio resources. This article first compares two fundamental bandwidth request mechanisms specified in the standard, random access vs. polling under the point-to-multipoint mode, a mandatory transmission mode. Our results demonstrate that random access outperforms polling when the request rate is low. However, its performance degrades significantly when the channel is congested. Adaptive switching between random access and polling according to load can improve system performance. We also investigate the impact of channel noise on the random access request mechanism

    Sleep Mode Analysis via Workload Decomposition

    Full text link
    The goal of this paper is to establish a general approach for analyzing queueing models with repeated inhomogeneous vacations. The server goes on for a vacation if the inactivity prolongs more than the vacation trigger duration. Once the system enters in vacation mode, it may continue for several consecutive vacations. At the end of a vacation, the server goes on another vacation, possibly with a different probability distribution; if during the previous vacation there have been no arrivals. However the system enters in vacation mode only if the inactivity is persisted beyond defined trigger duration. In order to get an insight on the influence of parameters on the performance, we choose to study a simple M/G/1 queue (Poisson arrivals and general independent service times) which has the advantage of being tractable analytically. The theoretical model is applied to the problem of power saving for mobile devices in which the sleep durations of a device correspond to the vacations of the server. Various system performance metrics such as the frame response time and the economy of energy are derived. A constrained optimization problem is formulated to maximize the economy of energy achieved in power save mode, with constraints as QoS conditions to be met. An illustration of the proposed methods is shown with a WiMAX system scenario to obtain design parameters for better performance. Our analysis allows us not only to optimize the system parameters for a given traffic intensity but also to propose parameters that provide the best performance under worst case conditions

    Mobile Networks

    Get PDF
    The growth in the use of mobile networks has come mainly with the third generation systems and voice traffic. With the current third generation and the arrival of the 4G, the number of mobile users in the world will exceed the number of landlines users. Audio and video streaming have had a significant increase, parallel to the requirements of bandwidth and quality of service demanded by those applications. Mobile networks require that the applications and protocols that have worked successfully in fixed networks can be used with the same level of quality in mobile scenarios. Until the third generation of mobile networks, the need to ensure reliable handovers was still an important issue. On the eve of a new generation of access networks (4G) and increased connectivity between networks of different characteristics commonly called hybrid (satellite, ad-hoc, sensors, wired, WIMAX, LAN, etc.), it is necessary to transfer mechanisms of mobility to future generations of networks. In order to achieve this, it is essential to carry out a comprehensive evaluation of the performance of current protocols and the diverse topologies to suit the new mobility conditions

    Modeling And Dynamic Resource Allocation For High Definition And Mobile Video Streams

    Get PDF
    Video streaming traffic has been surging in the last few years, which has resulted in an increase of its Internet traffic share on a daily basis. The importance of video streaming management has been emphasized with the advent of High Definition: HD) video streaming, as it requires by its nature more network resources. In this dissertation, we provide a better support for managing HD video traffic over both wireless and wired networks through several contributions. We present a simple, general and accurate video source model: Simplified Seasonal ARIMA Model: SAM). SAM is capable of capturing the statistical characteristics of video traces with less than 5% difference from their calculated optimal models. SAM is shown to be capable of modeling video traces encoded with MPEG-4 Part2, MPEG-4 Part10, and Scalable Video Codec: SVC) standards, using various encoding settings. We also provide a large and publicly-available collection of HD video traces along with their analyses results. These analyses include a full statistical analysis of HD videos, in addition to modeling, factor and cluster analyses. These results show that by using SAM, we can achieve up to 50% improvement in video traffic prediction accuracy. In addition, we developed several video tools, including an HD video traffic generator based on our model. Finally, to improve HD video streaming resource management, we present a SAM-based delay-guaranteed dynamic resource allocation: DRA) scheme that can provide up to 32.4% improvement in bandwidth utilization

    Adaptive Differential Feedback in Time-Varying Multiuser MIMO Channels

    Full text link
    In the context of a time-varying multiuser multiple-input-multiple-output (MIMO) system, we design recursive least squares based adaptive predictors and differential quantizers to minimize the sum mean squared error of the overall system. Using the fact that the scalar entries of the left singular matrix of a Gaussian MIMO channel becomes almost Gaussian distributed even for a small number of transmit antennas, we perform adaptive differential quantization of the relevant singular matrix entries. Compared to the algorithms in the existing differential feedback literature, our proposed quantizer provides three advantages: first, the controller parameters are flexible enough to adapt themselves to different vehicle speeds; second, the model is backward adaptive i.e., the base station and receiver can agree upon the predictor and variance estimator coefficients without explicit exchange of the parameters; third, it can accurately model the system even when the correlation between two successive channel samples becomes as low as 0.05. Our simulation results show that our proposed method can reduce the required feedback by several kilobits per second for vehicle speeds up to 20 km/h (channel tracker) and 10 km/h (singular vector tracker). The proposed system also outperforms a fixed quantizer, with same feedback overhead, in terms of bit error rate up to 30 km/h.Comment: IEEE 22nd International Conference on Personal, Indoor and Mobile Radio Communications (2011
    • …
    corecore