29,441 research outputs found

    Approximate Bayesian Computation by Subset Simulation

    Get PDF
    A new Approximate Bayesian Computation (ABC) algorithm for Bayesian updating of model parameters is proposed in this paper, which combines the ABC principles with the technique of Subset Simulation for efficient rare-event simulation, first developed in S.K. Au and J.L. Beck [1]. It has been named ABC- SubSim. The idea is to choose the nested decreasing sequence of regions in Subset Simulation as the regions that correspond to increasingly closer approximations of the actual data vector in observation space. The efficiency of the algorithm is demonstrated in two examples that illustrate some of the challenges faced in real-world applications of ABC. We show that the proposed algorithm outperforms other recent sequential ABC algorithms in terms of computational efficiency while achieving the same, or better, measure of ac- curacy in the posterior distribution. We also show that ABC-SubSim readily provides an estimate of the evidence (marginal likelihood) for posterior model class assessment, as a by-product

    Simulation in Statistics

    Full text link
    Simulation has become a standard tool in statistics because it may be the only tool available for analysing some classes of probabilistic models. We review in this paper simulation tools that have been specifically derived to address statistical challenges and, in particular, recent advances in the areas of adaptive Markov chain Monte Carlo (MCMC) algorithms, and approximate Bayesian calculation (ABC) algorithms.Comment: Draft of an advanced tutorial paper for the Proceedings of the 2011 Winter Simulation Conferenc

    Tandem: A Context-Aware Method for Spontaneous Clustering of Dynamic Wireless Sensor Nodes

    Get PDF
    Wireless sensor nodes attached to everyday objects and worn by people are able to collaborate and actively assist users in their activities. We propose a method through which wireless sensor nodes organize spontaneously into clusters based on a common context. Provided that the confidence of sharing a common context varies in time, the algorithm takes into account a window-based history of believes. We approximate the behaviour of the algorithm using a Markov chain model and we analyse theoretically the cluster stability. We compare the theoretical approximation with simulations, by making use of experimental results reported from field tests. We show the tradeoff between the time history necessary to achieve a certain stability and the responsiveness of the clustering algorithm

    Study of new rare event simulation schemes and their application to extreme scenario generation

    Get PDF
    This is a companion paper based on our previous work on rare event simulation methods. In this paper, we provide an alternative proof for the ergodicity of shaking transformation in the Gaussian case and propose two variants of the existing methods with comparisons of numerical performance. In numerical tests, we also illustrate the idea of extreme scenario generation based on the convergence of marginal distributions of the underlying Markov chains and show the impact of the discretization of continuous time models on rare event probability estimation
    corecore