385 research outputs found

    Real-Time Active-Reactive Optimal Power Flow with Flexible Operation of Battery Storage Systems

    Get PDF
    In this paper, a multi-phase multi-time-scale real-time dynamic active-reactive optimal power flow (RT-DAR-OPF) framework is developed to optimally deal with spontaneous changes in wind power in distribution networks (DNs) with battery storage systems (BSSs). The most challenging issue hereby is that a large-scale ‘dynamic’ (i.e., with differential/difference equations rather than only algebraic equations) mixed-integer nonlinear programming (MINLP) problem has to be solved in real time. Moreover, considering the active-reactive power capabilities of BSSs with flexible operation strategies, as well as minimizing the expended life costs of BSSs further increases the complexity of the problem. To solve this problem, in the first phase, we implement simultaneous optimization of a huge number of mixed-integer decision variables to compute optimal operations of BSSs on a day-to-day basis. In the second phase, based on the forecasted wind power values for short prediction horizons, wind power scenarios are generated to describe uncertain wind power with non-Gaussian distribution. Then, MINLP AR-OPF problems corresponding to the scenarios are solved and reconciled in advance of each prediction horizon. In the third phase, based on the measured actual values of wind power, one of the solutions is selected, modified, and realized to the network for very short intervals. The applicability of the proposed RT-DAR-OPF is demonstrated using a medium-voltage DN

    Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods

    Get PDF
    In view of scarcity of traditional energy resources and environmental issues, renewable energy resources (RERs) are introduced to fulfill the electricity requirement of growing world. Moreover, the effective utilization of RERs to fulfill the varying electricity demands of customers can be achieved via demand response (DR). Furthermore, control techniques, decision variables and offered motivations are the ways to introduce DR into distribution network (DN). This categorization needs to be optimized to balance the supply and demand in DN. Therefore, intelligent algorithms are employed to achieve optimized DR. However, these algorithms are computationally restrained to handle the parametric load of uncertainty involved with RERs and power system. Henceforth, this paper focuses on the limitations of intelligent algorithms for DR. Furthermore, a comparative study of different intelligent algorithms for DR is discussed. Based on conclusions, quantum algorithms are recommended to optimize the computational burden for DR in future smart grid
    • …
    corecore