82 research outputs found

    Intelligent Sensors for Human Motion Analysis

    Get PDF
    The book, "Intelligent Sensors for Human Motion Analysis," contains 17 articles published in the Special Issue of the Sensors journal. These articles deal with many aspects related to the analysis of human movement. New techniques and methods for pose estimation, gait recognition, and fall detection have been proposed and verified. Some of them will trigger further research, and some may become the backbone of commercial systems

    Human Pose Estimation from Monocular Images : a Comprehensive Survey

    Get PDF
    Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problema into several modules: feature extraction and description, human body models, and modelin methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used

    Capturing Hands in Action using Discriminative Salient Points and Physics Simulation

    Full text link
    Hand motion capture is a popular research field, recently gaining more attention due to the ubiquity of RGB-D sensors. However, even most recent approaches focus on the case of a single isolated hand. In this work, we focus on hands that interact with other hands or objects and present a framework that successfully captures motion in such interaction scenarios for both rigid and articulated objects. Our framework combines a generative model with discriminatively trained salient points to achieve a low tracking error and with collision detection and physics simulation to achieve physically plausible estimates even in case of occlusions and missing visual data. Since all components are unified in a single objective function which is almost everywhere differentiable, it can be optimized with standard optimization techniques. Our approach works for monocular RGB-D sequences as well as setups with multiple synchronized RGB cameras. For a qualitative and quantitative evaluation, we captured 29 sequences with a large variety of interactions and up to 150 degrees of freedom.Comment: Accepted for publication by the International Journal of Computer Vision (IJCV) on 16.02.2016 (submitted on 17.10.14). A combination into a single framework of an ECCV'12 multicamera-RGB and a monocular-RGBD GCPR'14 hand tracking paper with several extensions, additional experiments and detail

    Deep 3D human pose estimation: A review

    Get PDF

    Single View Human Pose Tracking

    Get PDF
    Recovery of human pose from videos has become a highly active research area in the last decade because of many attractive potential applications, such as surveillance, non-intrusive motion analysis and natural human machine interaction. Video based full body pose estimation is a very challenging task, because of the high degree of articulation of the human body, the large variety of possible human motions, and the diversity of human appearances. Methods for tackling this problem can be roughly categorized as either discriminative or generative. Discriminative methods can work on single images, and are able to recover the human poses efficiently. However, the accuracy and generality largely depend on the training data. Generative approaches usually formulate the problem as a tracking problem and adopt an explicit human model. Although arbitrary motions can be tracked, such systems usually have difficulties in adapting to different subjects and in dealing with tracking failures. In this thesis, an accurate, efficient and robust human pose tracking system from a single view camera is developed, mainly following a generative approach. A novel discriminative feature is also proposed and integrated into the tracking framework to improve the tracking performance. The human pose tracking system is proposed within a particle filtering framework. A reconfigurable skeleton model is constructed based on the Acclaim Skeleton File convention. A basic particle filter is first implemented for upper body tracking, which fuses time efficient cues from monocular sequences and achieves real-time tracking for constrained motions. Next, a 3D surface model is added to the skeleton model, and a full body tracking system is developed for more general and complex motions, assuming a stereo camera input. Partitioned sampling is adopted to deal with the high dimensionality problem, and the system is capable of running in near real-time. Multiple visual cues are investigated and compared, including a newly developed explicit depth cue. Based on the comparative analysis of cues, which reveals the importance of depth and good bottom-up features, a novel algorithm for detecting and identifying endpoint body parts from depth images is proposed. Inspired by the shape context concept, this thesis proposes a novel Local Shape Context (LSC) descriptor specifically for describing the shape features of body parts in depth images. This descriptor describes the local shape of different body parts with respect to a given reference point on a human silhouette, and is shown to be effective at detecting and classifying endpoint body parts. A new type of interest point is defined based on the LSC descriptor, and a hierarchical interest point selection algorithm is designed to further conserve computational resources. The detected endpoint body parts are then classified according to learned models based on the LSC feature. The algorithm is tested using a public dataset and achieves good accuracy with a 100Hz processing speed on a standard PC. Finally, the LSC descriptor is improved to be more generalized. Both the endpoint body parts and the limbs are detected simultaneously. The generalized algorithm is integrated into the tracking framework, which provides a very strong cue and enables tracking failure recovery. The skeleton model is also simplified to further increase the system efficiency. To evaluate the system on arbitrary motions quantitatively, a new dataset is designed and collected using a synchronized Kinect sensor and a marker based motion capture system, including 22 different motions from 5 human subjects. The system is capable of tracking full body motions accurately using a simple skeleton-only model in near real-time on a laptop PC before optimization

    Tracking hands in action for gesture-based computer input

    Get PDF
    This thesis introduces new methods for markerless tracking of the full articulated motion of hands and for informing the design of gesture-based computer input. Emerging devices such as smartwatches or virtual/augmented reality glasses are in need of new input devices for interaction on the move. The highly dexterous human hands could provide an always-on input capability without the actual need to carry a physical device. First, we present novel methods to address the hard computer vision-based hand tracking problem under varying number of cameras, viewpoints, and run-time requirements. Second, we contribute to the design of gesture-based interaction techniques by presenting heuristic and computational approaches. The contributions of this thesis allow users to effectively interact with computers through markerless tracking of hands and objects in desktop, mobile, and egocentric scenarios.Diese Arbeit stellt neue Methoden für die markerlose Verfolgung der vollen Artikulation der Hände und für die Informierung der Gestaltung der Gestik-Computer-Input. Emerging-Geräte wie Smartwatches oder virtuelle / Augmented-Reality-Brillen benötigen neue Eingabegeräte für Interaktion in Bewegung. Die sehr geschickten menschlichen Hände konnten eine immer-on-Input-Fähigkeit, ohne die tatsächliche Notwendigkeit, ein physisches Gerät zu tragen. Zunächst stellen wir neue Verfahren vor, um das visionbasierte Hand-Tracking-Problem des Hardcomputers unter variierender Anzahl von Kameras, Sichtweisen und Laufzeitanforderungen zu lösen. Zweitens tragen wir zur Gestaltung von gesture-basierten Interaktionstechniken bei, indem wir heuristische und rechnerische Ansätze vorstellen. Die Beiträge dieser Arbeit ermöglichen es Benutzern, effektiv interagieren mit Computern durch markerlose Verfolgung von Händen und Objekten in Desktop-, mobilen und egozentrischen Szenarien
    • …
    corecore