2,379 research outputs found

    Computer- and robot-assisted Medical Intervention

    Full text link
    Medical robotics includes assistive devices used by the physician in order to make his/her diagnostic or therapeutic practices easier and more efficient. This chapter focuses on such systems. It introduces the general field of Computer-Assisted Medical Interventions, its aims, its different components and describes the place of robots in that context. The evolutions in terms of general design and control paradigms in the development of medical robots are presented and issues specific to that application domain are discussed. A view of existing systems, on-going developments and future trends is given. A case-study is detailed. Other types of robotic help in the medical environment (such as for assisting a handicapped person, for rehabilitation of a patient or for replacement of some damaged/suppressed limbs or organs) are out of the scope of this chapter.Comment: Handbook of Automation, Shimon Nof (Ed.) (2009) 000-00

    Motion correction of PET/CT images

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)The advances in health care technology help physicians make more accurate diagnoses about the health conditions of their patients. Positron Emission Tomography/Computed Tomography (PET/CT) is one of the many tools currently used to diagnose health and disease in patients. PET/CT explorations are typically used to detect: cancer, heart diseases, disorders in the central nervous system. Since PET/CT studies can take up to 60 minutes or more, it is impossible for patients to remain motionless throughout the scanning process. This movements create motion-related artifacts which alter the quantitative and qualitative results produced by the scanning process. The patient's motion results in image blurring, reduction in the image signal to noise ratio, and reduced image contrast, which could lead to misdiagnoses. In the literature, software and hardware-based techniques have been studied to implement motion correction over medical files. Techniques based on the use of an external motion tracking system are preferred by researchers because they present a better accuracy. This thesis proposes a motion correction system that uses 3D affine registrations using particle swarm optimization and an off-the-shelf Microsoft Kinect camera to eliminate or reduce errors caused by the patient's motion during a medical imaging study

    Practical aspects of a data-driven motion correction approach for brain SPECT

    Get PDF
    Patient motion can cause image artifacts in single photon emission computed tomography despite restraining measures. Data-driven detection and correction of motion can be achieved by comparison of acquired data with the forward projections. This enables the brain locations to be estimated and data to be correctly incorporated in a three-dimensional (3-D) reconstruction algorithm. Digital and physical phantom experiments were performed to explore practical aspects of this approach. Noisy simulation data modeling multiple 3-D patient head movements were constructed by projecting the digital Hoffman brain phantom at various orientations. Hoffman physical phantom data incorporating deliberate movements were also gathered. Motion correction was applied to these data using various regimes to determine the importance of attenuation and successive iterations. Studies were assessed visually for artifact reduction, and analyzed quantitatively via a mean registration error (MRE) and mean square difference measure (MSD). Artifacts and distortion in the motion corrupted data were reduced to a large extent by application of this algorithm. MRE values were mostly well within 1 pixel (4.4 mm) for the simulated data. Significant MSD improvements (>2) were common. Inclusion of attenuation was unnecessary to accurately estimate motion, doubling the efficiency and simplifying implementation. Moreover, most motion-related errors were removed using a single iteration. The improvement for the physical phantom data was smaller, though this may be due to object symmetry. In conclusion, these results provide the basis of an implementation protocol for clinical validation of the technique

    Real Time Structured Light and Applications

    Get PDF

    The Estimation and Correction of Rigid Motion in Helical Computed Tomography

    Get PDF
    X-ray CT is a tomographic imaging tool used in medicine and industry. Although technological developments have significantly improved the performance of CT systems, the accuracy of images produced by state-of-the-art scanners is still often limited by artefacts due to object motion. To tackle this problem, a number of motion estimation and compensation methods have been proposed. However, no methods with the demonstrated ability to correct for rigid motion in helical CT scans appear to exist. The primary aims of this thesis were to develop and evaluate effective methods for the estimation and correction of arbitrary six degree-of-freedom rigid motion in helical CT. As a first step, a method was developed to accurately estimate object motion during CT scanning with an optical tracking system, which provided sub-millimetre positional accuracy. Subsequently a motion correction method, which is analogous to a method previously developed for SPECT, was adapted to CT. The principle is to restore projection consistency by modifying the source-detector orbit in response to the measured object motion and reconstruct from the modified orbit with an iterative reconstruction algorithm. The feasibility of this method was demonstrated with a rapidly moving brain phantom, and the efficacy of correcting for a range of human head motions acquired from healthy volunteers was evaluated in simulations. The methods developed were found to provide accurate and artefact-free motion corrected images with most types of head motion likely to be encountered in clinical CT imaging, provided that the motion was accurately known. The method was also applied to CT data acquired on a hybrid PET/CT scanner demonstrating its versatility. Its clinical value may be significant by reducing the need for repeat scans (and repeat radiation doses), anesthesia and sedation in patient groups prone to motion, including young children

    Multi Camera Stereo and Tracking Patient Motion for SPECT Scanning Systems

    Get PDF
    Patient motion, which causes artifacts in reconstructed images, can be a serious problem in Single Photon Emission Computed Tomography (SPECT) imaging. If patient motion can be detected and quantified, the reconstruction algorithm can compensate for the motion. A real-time multi-threaded Visual Tracking System (VTS) using optical cameras, which will be suitable for deployment in clinical trials, is under development. The VTS tracks patients using multiple video images and image processing techniques, calculating patient motion in three-dimensional space. This research aimed to develop and implement an algorithm for feature matching and stereo location computation using multiple cameras. Feature matching is done based on the epipolar geometry constraints for a pair of images and extended to the multiple view case with an iterative algorithm. Stereo locations of the matches are then computed using sum of squared distances from the projected 3D lines in SPECT coordinates as the error metric. This information from the VTS, when coupled with motion assessment from the emission data itself, can provide a robust compensation for patient motion as part of reconstruction

    Dynamic Thermal Imaging for Intraoperative Monitoring of Neuronal Activity and Cortical Perfusion

    Get PDF
    Neurosurgery is a demanding medical discipline that requires a complex interplay of several neuroimaging techniques. This allows structural as well as functional information to be recovered and then visualized to the surgeon. In the case of tumor resections this approach allows more fine-grained differentiation of healthy and pathological tissue which positively influences the postoperative outcome as well as the patient's quality of life. In this work, we will discuss several approaches to establish thermal imaging as a novel neuroimaging technique to primarily visualize neural activity and perfusion state in case of ischaemic stroke. Both applications require novel methods for data-preprocessing, visualization, pattern recognition as well as regression analysis of intraoperative thermal imaging. Online multimodal integration of preoperative and intraoperative data is accomplished by a 2D-3D image registration and image fusion framework with an average accuracy of 2.46 mm. In navigated surgeries, the proposed framework generally provides all necessary tools to project intraoperative 2D imaging data onto preoperative 3D volumetric datasets like 3D MR or CT imaging. Additionally, a fast machine learning framework for the recognition of cortical NaCl rinsings will be discussed throughout this thesis. Hereby, the standardized quantification of tissue perfusion by means of an approximated heating model can be achieved. Classifying the parameters of these models yields a map of connected areas, for which we have shown that these areas correlate with the demarcation caused by an ischaemic stroke segmented in postoperative CT datasets. Finally, a semiparametric regression model has been developed for intraoperative neural activity monitoring of the somatosensory cortex by somatosensory evoked potentials. These results were correlated with neural activity of optical imaging. We found that thermal imaging yields comparable results, yet doesn't share the limitations of optical imaging. In this thesis we would like to emphasize that thermal imaging depicts a novel and valid tool for both intraoperative functional and structural neuroimaging

    Perspectives on Nuclear Medicine for Molecular Diagnosis and Integrated Therapy

    Get PDF
    nuclear medicine; diagnostic radiolog
    • …
    corecore