848 research outputs found

    Reliable Navigational Scene Perception for Autonomous Ships in Maritime Environment

    Get PDF
    Due to significant advances in robotics and transportation, research on autonomous ships has attracted considerable attention. The most critical task is to make the ships capable of accurately, reliably, and intelligently detecting their surroundings to achieve high levels of autonomy. Three deep learning-based models are constructed in this thesis to perform complex perceptual tasks such as identifying ships, analysing encounter situations, and recognising water surface objects. In this thesis, sensors, including the Automatic Identification System (AIS) and cameras, provide critical information for scene perception. Specifically, the AIS enables mid-range and long-range detection, assisting the decision-making system to take suitable and decisive action. A Convolutional Neural Network-Ship Movement Modes Classification (CNN-SMMC) is used to detect ships or objects. Following that, a Semi- Supervised Convolutional Encoder-Decoder Network (SCEDN) is developed to classify ship encounter situations and make a collision avoidance plan for the moving ships or objects. Additionally, cameras are used to detect short-range objects, a supplementary solution to ships or objects not equipped with an AIS. A Water Obstacle Detection Network based on Image Segmentation (WODIS) is developed to find potential threat targets. A series of quantifiable experiments have demonstrated that these models can provide reliable scene perception for autonomous ships

    Extracting Maritime Traffic Networks from AIS Data Using Evolutionary Algorithm

    Get PDF
    The presented method reconstructs a network (a graph) from AIS data, which reflects vessel traffic and can be used for route planning. The approach consists of three main steps: maneuvering points detection, waypoints discovery, and edge construction. The maneuvering points detection uses the CUSUM method and reduces the amount of data for further processing. The genetic algorithm with spatial partitioning is used for waypoints discovery. Finally, edges connecting these waypoints form the final maritime traffic network. The approach aims at advancing the practice of maritime voyage planning, which is typically done manually by a ship’s navigation officer. The authors demonstrate the results of the implementation using Apache Spark, a popular distributed and parallel computing framework. The method is evaluated by comparing the results with an on-line voyage planning application. The evaluation shows that the approach has the capacity to generate a graph which resembles the real-world maritime traffic network

    A Dimensionality Reduction-Based Multi-Step Clustering Method for Robust Vessel Trajectory Analysis

    Get PDF
    The Shipboard Automatic Identification System (AIS) is crucial for navigation safety and maritime surveillance, data mining and pattern analysis of AIS information have attracted considerable attention in terms of both basic research and practical applications. Clustering of spatio-temporal AIS trajectories can be used to identify abnormal patterns and mine customary route data for transportation safety. Thus, the capacities of navigation safety and maritime traffic monitoring could be enhanced correspondingly. However, trajectory clustering is often sensitive to undesirable outliers and is essentially more complex compared with traditional point clustering. To overcome this limitation, a multi-step trajectory clustering method is proposed in this paper for robust AIS trajectory clustering. In particular, the Dynamic Time Warping (DTW), a similarity measurement method, is introduced in the first step to measure the distances between different trajectories. The calculated distances, inversely proportional to the similarities, constitute a distance matrix in the second step. Furthermore, as a widely-used dimensional reduction method, Principal Component Analysis (PCA) is exploited to decompose the obtained distance matrix. In particular, the top k principal components with above 95% accumulative contribution rate are extracted by PCA, and the number of the centers k is chosen. The k centers are found by the improved center automatically selection algorithm. In the last step, the improved center clustering algorithm with k clusters is implemented on the distance matrix to achieve the final AIS trajectory clustering results. In order to improve the accuracy of the proposed multi-step clustering algorithm, an automatic algorithm for choosing the k clusters is developed according to the similarity distance. Numerous experiments on realistic AIS trajectory datasets in the bridge area waterway and Mississippi River have been implemented to compare our proposed method with traditional spectral clustering and fast affinity propagation clustering. Experimental results have illustrated its superior performance in terms of quantitative and qualitative evaluation

    Intelligent Graph Convolutional Neural Network for Road Crack Detection

    Get PDF
    This paper presents a novel intelligent system based on graph convolutional neural networks to study road crack detection in intelligent transportation systems. The visual features of the input images are first computed using the well-known Scale-Invariant Feature Transform (SIFT) extraction algorithm. Then, a correlation between SIFT features of similar images is analyzed and a series of graphs are generated. The graphs are trained on a graph convolutional neural network, and a hyper-optimization algorithm is developed to supervise the training process. A case study of road crack detection data is analyzed. The results show a clear superiority of the proposed framework over state-of-the-art solutions. In fact, the precision of the proposed solution exceeds 70%, while the precision of the baseline methods does not exceed 60%.acceptedVersio

    Research on improving navigation safety based on big data and cloud computing technology for Qiongzhou strait

    Get PDF

    IDT-3D: Identification and tracking in controlled environments using a 3D unified user interface

    Get PDF
    Identification and tracking of objects in specific environments such as harbors or security areas is a matter of great importance nowadays. With this purpose, numerous systems based on different technologies have been developed, resulting in a great amount of gathered data displayed through a variety of interfaces. Such amount of information has to be evaluated by human operators in order to take the correct decisions, sometimes under highly critical situations demanding both speed and accuracy. In order to face this problem we describe IDT-3D, a platform for identification and tracking of vessels in a harbour environment able to represent fused information in real time using a Virtual Reality application. The effectiveness of using IDT-3D as an integrated surveillance system is currently under evaluation. Preliminary results point to a significant decrease in the times of reaction and decision making of operators facing up a critical situation. Although the current application focus of IDT-3D is quite specific, the results of this research could be extended to the identification and tracking of targets in other controlled environments of interest as coastlines, borders or even urban areas

    Incorporation of AIS data-based machine learning into unsupervised route planning for maritime autonomous surface ships

    Get PDF
    Maritime Autonomous Surface Ships (MASS) are deemed as the future of maritime transport. Although showing attractiveness in terms of the solutions to emerging challenges such as carbon emission and insufficient labor caused by black swan events such as COVID-19, the applications of MASS have revealed problems in practice, among which MASS navigation safety presents a prioritized concern. To ensure safety, rational route planning for MASS is evident as the most critical step to avoiding any relevant collision accidents. This paper aims to develop a holistic framework for the unsupervised route planning of MASS using machine learning methods based on Automatic Identification System (AIS) data, including the coherent steps of new feature measurement, pattern extraction, and route planning algorithms. Historical AIS data from manned ships are trained to extract and generate movement patterns. The route planning for MASS is derived from the movement patterns according to a dynamic optimization method and a feature extraction algorithm. Numerical experiments are constructed on real AIS data to demonstrate the effectiveness of the proposed method in solving the route planning for different types of MASS
    corecore