61 research outputs found

    Exploiting sparsity and sharing in probabilistic sensor data models

    Get PDF
    Probabilistic sensor models defined as dynamic Bayesian networks can possess an inherent sparsity that is not reflected in the structure of the network. Classical inference algorithms like variable elimination and junction tree propagation cannot exploit this sparsity. Also, they do not exploit the opportunities for sharing calculations among different time slices of the model. We show that, using a relational representation, inference expressions for these sensor models can be rewritten to make efficient use of sparsity and sharing

    Probabilistic Inference in Piecewise Graphical Models

    No full text
    In many applications of probabilistic inference the models contain piecewise densities that are differentiable except at partition boundaries. For instance, (1) some models may intrinsically have finite support, being constrained to some regions; (2) arbitrary density functions may be approximated by mixtures of piecewise functions such as piecewise polynomials or piecewise exponentials; (3) distributions derived from other distributions (via random variable transformations) may be highly piecewise; (4) in applications of Bayesian inference such as Bayesian discrete classification and preference learning, the likelihood functions may be piecewise; (5) context-specific conditional probability density functions (tree-CPDs) are intrinsically piecewise; (6) influence diagrams (generalizations of Bayesian networks in which along with probabilistic inference, decision making problems are modeled) are in many applications piecewise; (7) in probabilistic programming, conditional statements lead to piecewise models. As we will show, exact inference on piecewise models is not often scalable (if applicable) and the performance of the existing approximate inference techniques on such models is usually quite poor. This thesis fills this gap by presenting scalable and accurate algorithms for inference in piecewise probabilistic graphical models. Our first contribution is to present a variation of Gibbs sampling algorithm that achieves an exponential sampling speedup on a large class of models (including Bayesian models with piecewise likelihood functions). As a second contribution, we show that for a large range of models, the time-consuming Gibbs sampling computations that are traditionally carried out per sample, can be computed symbolically, once and prior to the sampling process. Among many potential applications, the resulting symbolic Gibbs sampler can be used for fully automated reasoning in the presence of deterministic constraints among random variables. As a third contribution, we are motivated by the behavior of Hamiltonian dynamics in optics —in particular, the reflection and refraction of light on the refractive surfaces— to present a new Hamiltonian Monte Carlo method that demonstrates a significantly improved performance on piecewise models. Hopefully, the present work represents a step towards scalable and accurate inference in an important class of probabilistic models that has largely been overlooked in the literature

    Natively probabilistic computation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences, 2009.Includes bibliographical references (leaves 129-135).I introduce a new set of natively probabilistic computing abstractions, including probabilistic generalizations of Boolean circuits, backtracking search and pure Lisp. I show how these tools let one compactly specify probabilistic generative models, generalize and parallelize widely used sampling algorithms like rejection sampling and Markov chain Monte Carlo, and solve difficult Bayesian inference problems. I first introduce Church, a probabilistic programming language for describing probabilistic generative processes that induce distributions, which generalizes Lisp, a language for describing deterministic procedures that induce functions. I highlight the ways randomness meshes with the reflectiveness of Lisp to support the representation of structured, uncertain knowledge, including nonparametric Bayesian models from the current literature, programs for decision making under uncertainty, and programs that learn very simple programs from data. I then introduce systematic stochastic search, a recursive algorithm for exact and approximate sampling that generalizes a popular form of backtracking search to the broader setting of stochastic simulation and recovers widely used particle filters as a special case. I use it to solve probabilistic reasoning problems from statistical physics, causal reasoning and stereo vision. Finally, I introduce stochastic digital circuits that model the probability algebra just as traditional Boolean circuits model the Boolean algebra.(cont.) I show how these circuits can be used to build massively parallel, fault-tolerant machines for sampling and allow one to efficiently run Markov chain Monte Carlo methods on models with hundreds of thousands of variables in real time. I emphasize the ways in which these ideas fit together into a coherent software and hardware stack for natively probabilistic computing, organized around distributions and samplers rather than deterministic functions. I argue that by building uncertainty and randomness into the foundations of our programming languages and computing machines, we may arrive at ones that are more powerful, flexible and efficient than deterministic designs, and are in better alignment with the needs of computational science, statistics and artificial intelligence.by Vikash Kumar Mansinghka.Ph.D

    Context-sensitive network: A probabilistic context language for adaptive reasoning

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    The Principles of Deep Learning Theory

    Full text link
    This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.Comment: 451 pages, to be published by Cambridge University Pres

    The Question: Could a multi-sensory approach to design facilitate a re-enchantment of the food industry in Britain?

    Get PDF
    This thesis explores the potential of design industries ability to re-enchant the food industry in Britain in 2007. My research is informed by the increasing evidence of the negative impact on human and biosphere wellbeing and industrialization practice in food production and marketing. I highlight the connection between design's promotion of the hegemony of visuality and the marginalization of opportunities to construct connections between food source and its quality through multi-sensory engagement. I have adapted Webber's (2000) idea of disenchantment to describe a condition .in which the deterioration of quality of food experience. I argue that industrialization has created a loss of intangible qualities and traditions that have a clear potential to provide deep sources of pleasure and meaning to participants. I have focused on the relationship between design and food in order to evidence how design has become a tool of instrumental rationality by primarily servicing the short-term economic agendas of corporate business. I argue that design's focus on the role of seduction has led to the marginalization of a latent ability to connect consumers and producers to value through their non-visual senses. I propose that a multi-sensory form of design is capable of informing the restoration/creation of a deeper and more reflective relationship with the food chain. I argue that the route to this outcome is through the re-evaluation and re-education of the role that multi-sensory aesthetics play in the construction of promoting more benign rituals of production and consumption. I use evidence of multi-sensory practice in the non-industrialized and ethical food sector as an analogy and source that could sensory awareness to the designer's portfolio. I draw on a wide range of evidence to inform and support my explanation of the origins and character of the syndrome of industrialized production, marketing and consumption. My goal is informed by a concern to demonstrate that multi-sensory design could support the viability of alternative production and consumption strategie

    Marginalization without Summation Exploiting Determinism in Factor Algebra

    No full text

    Marginalization without Summation Exploiting Determinism in Factor Algebra

    No full text
    Contains fulltext : 92027.pdf (publisher's version ) (Closed access
    corecore