24,685 research outputs found

    Deep Variational Reinforcement Learning for POMDPs

    Full text link
    Many real-world sequential decision making problems are partially observable by nature, and the environment model is typically unknown. Consequently, there is great need for reinforcement learning methods that can tackle such problems given only a stream of incomplete and noisy observations. In this paper, we propose deep variational reinforcement learning (DVRL), which introduces an inductive bias that allows an agent to learn a generative model of the environment and perform inference in that model to effectively aggregate the available information. We develop an n-step approximation to the evidence lower bound (ELBO), allowing the model to be trained jointly with the policy. This ensures that the latent state representation is suitable for the control task. In experiments on Mountain Hike and flickering Atari we show that our method outperforms previous approaches relying on recurrent neural networks to encode the past

    Decomposing Integrated Assessment Climate Change

    Get PDF
    We present a decomposition approach for integrated assessment modeling of climate policy based on a linear approximation of the climate system. Our objective is to demonstrate the usefulness of decomposition for integrated assessment models posed in a complementarity format. First, the complementarity formulation cum decomposition permits a precise representation of post-terminal damages thereby substantially reducing the model horizon required to produce an accurate approximation of the infinite-horizon equilibrium. Second, and central to the economic assessment of climate policies, the complementarity approach provides a means of incorporating second-best effects that are not easily represented in an optimization model. --integrated assessment,decomposition,terminal constraints,optimal taxation

    From Language to Programs: Bridging Reinforcement Learning and Maximum Marginal Likelihood

    Full text link
    Our goal is to learn a semantic parser that maps natural language utterances into executable programs when only indirect supervision is available: examples are labeled with the correct execution result, but not the program itself. Consequently, we must search the space of programs for those that output the correct result, while not being misled by spurious programs: incorrect programs that coincidentally output the correct result. We connect two common learning paradigms, reinforcement learning (RL) and maximum marginal likelihood (MML), and then present a new learning algorithm that combines the strengths of both. The new algorithm guards against spurious programs by combining the systematic search traditionally employed in MML with the randomized exploration of RL, and by updating parameters such that probability is spread more evenly across consistent programs. We apply our learning algorithm to a new neural semantic parser and show significant gains over existing state-of-the-art results on a recent context-dependent semantic parsing task.Comment: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (2017
    corecore