12,634 research outputs found

    Incentive Mechanisms for Internet Congestion Management: Fixed-Budget Rebate versus Time-of-Day Pricing

    Get PDF
    Mobile data traffic has been steadily rising in the past years. This has generated a significant interest in the deployment of incentive mechanisms to reduce peak-time congestion. Typically, the design of these mechanisms requires information about user demand and sensitivity to prices. Such information is naturally imperfect. In this paper, we propose a \emph{fixed-budget rebate mechanism} that gives each user a reward proportional to his percentage contribution to the aggregate reduction in peak time demand. For comparison, we also study a time-of-day pricing mechanism that gives each user a fixed reward per unit reduction of his peak-time demand. To evaluate the two mechanisms, we introduce a game-theoretic model that captures the \emph{public good} nature of decongestion. For each mechanism, we demonstrate that the socially optimal level of decongestion is achievable for a specific choice of the mechanism's parameter. We then investigate how imperfect information about user demand affects the mechanisms' effectiveness. From our results, the fixed-budget rebate pricing is more robust when the users' sensitivity to congestion is "sufficiently" convex. This feature of the fixed-budget rebate mechanism is attractive for many situations of interest and is driven by its closed-loop property, i.e., the unit reward decreases as the peak-time demand decreases.Comment: To appear in IEEE/ACM Transactions on Networkin

    Incentive Regulatory policies: The Case of Public Transit Systems in France

    Get PDF
    We assess the empirical relevance of the new theory of regulation, using a principal-agent framework to study the regulatory schemes used in the French urban transport industry. Taking the current regulatory schemes as given, the model of supply and demand provides estimates for the firms’ inefficiency, the effort of managers, and the cost of public funds. It allows us to derive the first-best and second-best regulatory policies for each network and compare them with the actual situation in terms of welfare loss or gain. Fixed-price policies lie between fully informed and uninformed second-best schemes. Cost-plus contracts are dominated by any type of second-best contract. From these results, we may conjecture that fixed-price contracts call for better-informed regulators.Publicad

    Dynamic and Static congestion models: A review

    Get PDF
    We begin by providing an overview of the conventional static equilibrium approach. In such model both the flow of trips and congestion delay are assumed to be constant. A drawback of the static model is that the time interval during which travel occurs is not specified so that the model cannot describe changes in the duration of congestion that result from changes in demand or capacity. This limitation is overcome in the Vickrey/Arnott, de Palma Lindsey bottleneck model, which combines congestion in the form of queuing behind a bottleneck with users' trip-timing preferences and departure time decisions. We derive the user equilibrium and social optimum for the basic bottleneck model, and explain how the optimum can be decentralized using a time-varying toll. They then review some extensions of the basic model that encompass elastic demand, user heterogeneity, stochastic demand and capacity and small networks. We conclude by identifying some unresolved modelling issues that apply not only to the bottleneck model but to trip-timing preferences and congestion dynamics in general

    Using Tuangou to reduce IP transit costs

    Get PDF
    A majority of ISPs (Internet Service Providers) support connectivity to the entire Internet by transiting their traffic via other providers. Although the transit prices per Mbps decline steadily, the overall transit costs of these ISPs remain high or even increase, due to the traffic growth. The discontent of the ISPs with the high transit costs has yielded notable innovations such as peering, content distribution networks, multicast, and peer-to-peer localization. While the above solutions tackle the problem by reducing the transit traffic, this paper explores a novel approach that reduces the transit costs without altering the traffic. In the proposed CIPT (Cooperative IP Transit), multiple ISPs cooperate to jointly purchase IP (Internet Protocol) transit in bulk. The aggregate transit costs decrease due to the economies-of-scale effect of typical subadditive pricing as well as burstable billing: not all ISPs transit their peak traffic during the same period. To distribute the aggregate savings among the CIPT partners, we propose Shapley-value sharing of the CIPT transit costs. Using public data about IP traffic of 264 ISPs and transit prices, we quantitatively evaluate CIPT and show that significant savings can be achieved, both in relative and absolute terms. We also discuss the organizational embodiment, relationship with transit providers, traffic confidentiality, and other aspects of CIPT
    • 

    corecore