1,936 research outputs found

    Quadratic Projection Based Feature Extraction with Its Application to Biometric Recognition

    Full text link
    This paper presents a novel quadratic projection based feature extraction framework, where a set of quadratic matrices is learned to distinguish each class from all other classes. We formulate quadratic matrix learning (QML) as a standard semidefinite programming (SDP) problem. However, the con- ventional interior-point SDP solvers do not scale well to the problem of QML for high-dimensional data. To solve the scalability of QML, we develop an efficient algorithm, termed DualQML, based on the Lagrange duality theory, to extract nonlinear features. To evaluate the feasibility and effectiveness of the proposed framework, we conduct extensive experiments on biometric recognition. Experimental results on three representative biometric recogni- tion tasks, including face, palmprint, and ear recognition, demonstrate the superiority of the DualQML-based feature extraction algorithm compared to the current state-of-the-art algorithm

    Generic multimodal biometric fusion

    Get PDF
    Biometric systems utilize physiological or behavioral traits to automatically identify individuals. A unimodal biometric system utilizes only one source of biometric information and suffers from a variety of problems such as noisy data, intra-class variations, restricted degrees of freedom, non-universality, spoof attacks and unacceptable error rates. Multimodal biometrics refers to a system which utilizes multiple biometric information sources and can overcome some of the limitation of unimodal system. Biometric information can be combined at 4 different levels: (i) Raw data level; (ii) Feature level; (iii) Match-score level; and (iv) Decision level. Match score fusion and decision fusion have received significant attention due to convenient information representation and raw data fusion is extremely challenging due to large diversity of representation. Feature level fusion provides a good trade-off between fusion complexity and loss of information due to subsequent processing. This work presents generic feature information fusion techniques for fusion of most of the commonly used feature representation schemes. A novel concept of Local Distance Kernels is introduced to transform the available information into an arbitrary common distance space where they can be easily fused together. Also, a new dynamic learnable noise removal scheme based on thresholding is used to remove shot noise in the distance vectors. Finally we propose the use of AdaBoost and Support Vector Machines for learning the fusion rules to obtain highly reliable final matching scores from the transformed local distance vectors. The integration of the proposed methods leads to large performance improvement over match-score or decision level fusion

    Adaptive Graph via Multiple Kernel Learning for Nonnegative Matrix Factorization

    Full text link
    Nonnegative Matrix Factorization (NMF) has been continuously evolving in several areas like pattern recognition and information retrieval methods. It factorizes a matrix into a product of 2 low-rank non-negative matrices that will define parts-based, and linear representation of nonnegative data. Recently, Graph regularized NMF (GrNMF) is proposed to find a compact representation,which uncovers the hidden semantics and simultaneously respects the intrinsic geometric structure. In GNMF, an affinity graph is constructed from the original data space to encode the geometrical information. In this paper, we propose a novel idea which engages a Multiple Kernel Learning approach into refining the graph structure that reflects the factorization of the matrix and the new data space. The GrNMF is improved by utilizing the graph refined by the kernel learning, and then a novel kernel learning method is introduced under the GrNMF framework. Our approach shows encouraging results of the proposed algorithm in comparison to the state-of-the-art clustering algorithms like NMF, GrNMF, SVD etc.Comment: This paper has been withdrawn by the author due to the terrible writin

    Robust iris recognition under unconstrained settings

    Get PDF
    Tese de mestrado integrado. Bioengenharia. Faculdade de Engenharia. Universidade do Porto. 201

    CGAMES'2009

    Get PDF

    Local learning by partitioning

    Full text link
    In many machine learning applications data is assumed to be locally simple, where examples near each other have similar characteristics such as class labels or regression responses. Our goal is to exploit this assumption to construct locally simple yet globally complex systems that improve performance or reduce the cost of common machine learning tasks. To this end, we address three main problems: discovering and separating local non-linear structure in high-dimensional data, learning low-complexity local systems to improve performance of risk-based learning tasks, and exploiting local similarity to reduce the test-time cost of learning algorithms. First, we develop a structure-based similarity metric, where low-dimensional non-linear structure is captured by solving a non-linear, low-rank representation problem. We show that this problem can be kernelized, has a closed-form solution, naturally separates independent manifolds, and is robust to noise. Experimental results indicate that incorporating this structural similarity in well-studied problems such as clustering, anomaly detection, and classification improves performance. Next, we address the problem of local learning, where a partitioning function divides the feature space into regions where independent functions are applied. We focus on the problem of local linear classification using linear partitioning and local decision functions. Under an alternating minimization scheme, learning the partitioning functions can be reduced to solving a weighted supervised learning problem. We then present a novel reformulation that yields a globally convex surrogate, allowing for efficient, joint training of the partitioning functions and local classifiers. We then examine the problem of learning under test-time budgets, where acquiring sensors (features) for each example during test-time has a cost. Our goal is to partition the space into regions, with only a small subset of sensors needed in each region, reducing the average number of sensors required per example. Starting with a cascade structure and expanding to binary trees, we formulate this problem as an empirical risk minimization and construct an upper-bounding surrogate that allows for sequential decision functions to be trained jointly by solving a linear program. Finally, we present preliminary work extending the notion of test-time budgets to the problem of adaptive privacy
    • ā€¦
    corecore