968 research outputs found

    PAVEL: Decorative Patterns with Packed Volumetric Elements

    Full text link
    Many real-world hand-crafted objects are decorated with elements that are packed onto the object's surface and deformed to cover it as much as possible. Examples are artisanal ceramics and metal jewelry. Inspired by these objects, we present a method to enrich surfaces with packed volumetric decorations. Our algorithm works by first determining the locations in which to add the decorative elements and then removing the non-physical overlap between them while preserving the decoration volume. For the placement, we support several strategies depending on the desired overall motif. To remove the overlap, we use an approach based on implicit deformable models creating the qualitative effect of plastic warping while avoiding expensive and hard-to-control physical simulations. Our decorative elements can be used to enhance virtual surfaces, as well as 3D-printed pieces, by assembling the decorations onto real-surfaces to obtain tangible reproductions.Comment: 11 page

    Tangible Scalar Fields

    Get PDF
    Data Visualization is a field that explores how to most efficiently convey information to the user, most often via visual representations like plots, graphs or glyphs. While this field of research has had great growth within the last couple of years, most of the work has been focused on the visual part of the human visual and auditory system - much less visualization work has been done in regards to the visually impaired. In this thesis, we will look at some previous methods and techniques for visualizing scalar fields via the sense of touch, and additionally provide two novel approaches to visualize a two-dimensional scalar field. Our first approach creates passive physicalizations from a scalar field in a semi-automatic pipeline by encoding the scalar value and field coordinates as positions in 3D space, which we use to construct a triangular mesh built from hexagonal pillars that can be printed on a 3D printer. We further enhance our mesh by encoding a directional attribute on the pillars, creating a visual encoding of the model orientation and improving upon a readability issue by mirroring the mesh. Our second approach uses a haptic force-feedback device to simulate the feeling of moving across a surface based on the scalar field by replicating three physical forces: the normal force, the friction force and the gravity force. We also further extend our approach by introducing a local encoding of global information about the scalar field via a volume representation build from the scalar field.Masteroppgave i informatikkINF399MAMN-PROGMAMN-IN

    One view is not enough: review of and encouragement for multiple and alternative representations in 3D and immersive visualisation

    Get PDF
    The opportunities for 3D visualisations are huge. People can be immersed inside their data, interface with it in natural ways, and see it in ways that are not possible on a traditional desktop screen. Indeed, 3D visualisations, especially those that are immersed inside head-mounted displays are becoming popular. Much of this growth is driven by the availability, popularity and falling cost of head-mounted displays and other immersive technologies. However, there are also challenges. For example, data visualisation objects can be obscured, important facets missed (perhaps behind the viewer), and the interfaces may be unfamiliar. Some of these challenges are not unique to 3D immersive technologies. Indeed, developers of traditional 2D exploratory visualisation tools would use alternative views, across a multiple coordinated view (MCV) system. Coordinated view interfaces help users explore the richness of the data. For instance, an alphabetical list of people in one view shows everyone in the database, while a map view depicts where they live. Each view provides a different task or purpose. While it is possible to translate some desktop interface techniques into the 3D immersive world, it is not always clear what equivalences would be. In this paper, using several case studies, we discuss the challenges and opportunities for using multiple views in immersive visualisation. Our aim is to provide a set of concepts that will enable developers to perform critical thinking, creative thinking and push the boundaries of what is possible with 3D and immersive visualisation. In summary developers should consider how to integrate many views, techniques and presentation styles, and one view is not enough when using 3D and immersive visualisations

    CAVE 3D: Software Extensions for Scientific Visualization of Large-scale Models

    Get PDF
    AbstractNumerical analysis of large-scale and multidisciplinary problems on high-performance computer systems is one of the main computational challenges of the 21st century. The amount of data processed in complex systems analyses approaches peta- and exascale. The technical possibility for real-time visualization, post-processing and analysis of large-scale models is extremely important for carrying out comprehensive numerical studies. Powerful visualization is going to play an important role in the future of large-scale models. In this paper, we describe several software extensions aimed to improve visualization performance for large-scale models and developed by our team for 3D virtual environment systems such as CAVEs and Powerwalls. These extensions include an algorithm for real-time generation of isosurfaces on large meshes and a visualization system designed for massively parallel computing environment. Besides, we describe an augmented reality system developed by the part of our team in Stuttgart

    Design of decorative 3D models: from geodesic ornaments to tangible assemblies

    Get PDF
    L'obiettivo di questa tesi è sviluppare strumenti utili per creare opere d'arte decorative digitali in 3D. Uno dei processi decorativi più comunemente usati prevede la creazione di pattern decorativi, al fine di abbellire gli oggetti. Questi pattern possono essere dipinti sull'oggetto di base o realizzati con l'applicazione di piccoli elementi decorativi. Tuttavia, la loro realizzazione nei media digitali non è banale. Da un lato, gli utenti esperti possono eseguire manualmente la pittura delle texture o scolpire ogni decorazione, ma questo processo può richiedere ore per produrre un singolo pezzo e deve essere ripetuto da zero per ogni modello da decorare. D'altra parte, gli approcci automatici allo stato dell'arte si basano sull'approssimazione di questi processi con texturing basato su esempi o texturing procedurale, o con sistemi di riproiezione 3D. Tuttavia, questi approcci possono introdurre importanti limiti nei modelli utilizzabili e nella qualità dei risultati. Il nostro lavoro sfrutta invece i recenti progressi e miglioramenti delle prestazioni nel campo dell'elaborazione geometrica per creare modelli decorativi direttamente sulle superfici. Presentiamo una pipeline per i pattern 2D e una per quelli 3D, e dimostriamo come ognuna di esse possa ricreare una vasta gamma di risultati con minime modifiche dei parametri. Inoltre, studiamo la possibilità di creare modelli decorativi tangibili. I pattern 3D generati possono essere stampati in 3D e applicati a oggetti realmente esistenti precedentemente scansionati. Discutiamo anche la creazione di modelli con mattoncini da costruzione, e la possibilità di mescolare mattoncini standard e mattoncini custom stampati in 3D. Ciò consente una rappresentazione precisa indipendentemente da quanto la voxelizzazione sia approssimativa. I principali contributi di questa tesi sono l'implementazione di due diverse pipeline decorative, un approccio euristico alla costruzione con mattoncini e un dataset per testare quest'ultimo.The aim of this thesis is to develop effective tools to create digital decorative 3D artworks. Real-world art often involves the use of decorative patterns to enrich objects. These patterns can be painted on the base or might be realized with the application of small decorative elements. However, their creation in digital media is not trivial. On the one hand, users can manually perform texture paint or sculpt each decoration, in a process that can take hours to produce a single piece and needs to be repeated from the ground up for every model that needs to be decorated. On the other hand, automatic approaches in state of the art rely on approximating these processes with procedural or by-example texturing or with 3D reprojection. However, these approaches can introduce significant limitations in the models that can be used and in the quality of the results. Instead, our work exploits the recent advances and performance improvements in the geometry processing field to create decorative patterns directly on surfaces. We present a pipeline for 2D and one for 3D patterns and demonstrate how each of them can recreate a variety of results with minimal tweaking of the parameters. Furthermore, we investigate the possibility of creating decorative tangible models. The 3D patterns we generate can be 3D printed and applied to previously scanned real-world objects. We also discuss the creation of models with standard building bricks and the possibility of mixing standard and custom 3D-printed bricks. This allows for a precise representation regardless of the coarseness of the voxelization. The main contributions of this thesis are the implementation of two different decorative pipelines, a heuristic approach to brick construction, and a dataset to test the latter

    Proceedings, MSVSCC 2013

    Get PDF
    Proceedings of the 7th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 11, 2013 at VMASC in Suffolk, Virginia

    Measurement and Evaluation of Deep Learning Based 3D Reconstruction

    Get PDF
    Performances of Deep Learning (DL) based methods for 3D reconstruction are becoming at par or better than classical computer vision techniques. Learning requires data with proper annotations. While images have a standardized representation, there is currently no widely accepted format for efficiently representing 3D output shapes. The challenge lies in finding a format that can handle the high-resolution geometry of any shape while also being memory and computationally efficient. Therefore, most advanced learning-based 3D reconstructions are restricted to a certain domain. In this work, we compare the performance of different output representations for 3D reconstruction in different contexts including objects or natural scenes, full human body to human body parts reconstruction. Despite substantial progress in the semantic understanding of the visual world, there are few methods that can reconstruct from a single view for a s large set of objects. Our the objective is to investigate methods to reconstruct a wider variety of object categories in 3D and aim to achieve accurate 3D reconstruction at both object and scene levels. In this work, we compare the performance of different output representations for 3D reconstruction in such a way that will give us implicit and smooth output representation of complex geometry of 3D from RGB images, DICOM (Digital Imaging and Communications in Medicine) formatted MRI breast images and images from a wild environment in terms of input using the Deep Learning methods and available 3D processing applications (MeshLab, 3D Slicer, and Mayavi)

    Sketching in 3D : towards a fluid space for mind and body

    Get PDF
    Thesis (S.M. in Architecture Studies)--Massachusetts Institute of Technology, Dept. of Architecture, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 80-82).This thesis explores a new type of computer-aided sketching tool for 3-dimensional designs. Sketching, as a process, has been used as an effective way to explore and develop ideas in the design process. However, when designers deal with volumetric designs in 3-dimensional space, current sketching means, including traditional free-hand sketching and contemporary computer-aided design (CAD) modeling have limitations such as dimensional inconsistency, and non-intuitive interactions. By observing the roles of sketching in the design process and reviewing the history of design tools, this thesis investigates and proposes new digital methods of 3-dimensional sketching that take advantage of motion detecting and computer-vision technology that is widely available today. In this thesis, two prototype tools were developed and compared. The first prototype uses a motion detecting sensor, projection screen, and gesture tracking software. The movement of the user's hands becomes the intuitive interface to shape 3-dimensional objects in the virtual space. The second prototype, developed in collaboration with Nagakura, uses a hand-held tablet computer with marker-based augmented reality technique. The hand-held device displays the virtual object from desired angles and works as a virtual tool like a chisel, plane, drill, and glue gun to shape virtual objects in 3-dimensional space. Testing these two prototypes for use, and comparing the resulting objects and user responses revealed the strengths and weaknesses of these different 3-dimensional sketching environments. The proposed systems provide a possible foundation for novel computer-aided sketching application that takes advantages of both the physical and virtual worlds.by Woongki Sung.S.M.in Architecture Studie

    The Fractured Memory of a Mind’s Eye

    Get PDF
    The work I create is informed by questioning reality/identity, the fractalizing planes of existence our essence occupies, and the artifacts of memory experience navigating through space time. While existing in this realm of oversaturated media and neon glow, I question the effects of pervasive data systems overloading or programming the mental software we possess. My work includes humor as a means of exploring these conventions while also displaying psychedelic surrealist imagery to help break away from the conscious prison this existence births our concept apparatuses within
    • …
    corecore