8,669 research outputs found

    The agricultural impact of the 2015–2016 floods in Ireland as mapped through Sentinel 1 satellite imagery

    Get PDF
    peer-reviewedIrish Journal of Agricultural and Food Research | Volume 58: Issue 1 The agricultural impact of the 2015–2016 floods in Ireland as mapped through Sentinel 1 satellite imagery R. O’Haraemail , S. Green and T. McCarthy DOI: https://doi.org/10.2478/ijafr-2019-0006 | Published online: 11 Oct 2019 PDF Abstract Article PDF References Recommendations Abstract The capability of Sentinel 1 C-band (5 cm wavelength) synthetic aperture radio detection and ranging (RADAR) (abbreviated as SAR) for flood mapping is demonstrated, and this approach is used to map the extent of the extensive floods that occurred throughout the Republic of Ireland in the winter of 2015–2016. Thirty-three Sentinel 1 images were used to map the area and duration of floods over a 6-mo period from November 2015 to April 2016. Flood maps for 11 separate dates charted the development and persistence of floods nationally. The maximum flood extent during this period was estimated to be ~24,356 ha. The depth of rainfall influenced the magnitude of flood in the preceding 5 d and over more extended periods to a lesser degree. Reduced photosynthetic activity on farms affected by flooding was observed in Landsat 8 vegetation index difference images compared to the previous spring. The accuracy of the flood map was assessed against reports of flooding from affected farms, as well as other satellite-derived maps from Copernicus Emergency Management Service and Sentinel 2. Monte Carlo simulated elevation data (20 m resolution, 2.5 m root mean square error [RMSE]) were used to estimate the flood’s depth and volume. Although the modelled flood height showed a strong correlation with the measured river heights, differences of several metres were observed. Future mapping strategies are discussed, which include high–temporal-resolution soil moisture data, as part of an integrated multisensor approach to flood response over a range of spatial scales

    On the use of satellite Sentinel 2 data for automatic mapping of burnt areas and burn severity

    Get PDF
    In this paper, we present and discuss the preliminary tools we devised for the automatic recognition of burnt areas and burn severity developed in the framework of the EU-funded SERV_FORFIRE project. The project is focused on the set up of operational services for fire monitoring and mitigation specifically devised for decision-makers and planning authorities. The main objectives of SERV_FORFIRE are: (i) to create a bridge between observations, model development, operational products, information translation and user uptake; and (ii) to contribute to creating an international collaborative community made up of researchers and decision-makers and planning authorities. For the purpose of this study, investigations into a fire burnt area were conducted in the south of Italy from a fire that occurred on 10 August 2017, affecting both the protected natural site of Pignola (Potenza, South of Italy) and agricultural lands. Sentinel 2 data were processed to identify and map different burnt areas and burn severity levels. Local Index for Statistical Analyses LISA were used to overcome the limits of fixed threshold values and to devise an automatic approach that is easier to re-apply to diverse ecosystems and geographic regions. The validation was assessed using 15 random plots selected from in situ analyses performed extensively in the investigated burnt area. The field survey showed a success rate of around 95%, whereas the commission and omission errors were around 3% of and 2%, respectively. Overall, our findings indicate that the use of Sentinel 2 data allows the development of standardized burn severity maps to evaluate fire effects and address post-fire management activities that support planning, decision-making, and mitigation strategies.Fil: Lasaponara, Rosa. Consiglio Nazionale delle Ricerche; ItaliaFil: Tucci, Biagio. Consiglio Nazionale delle Ricerche; ItaliaFil: Ghermandi, Luciana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Laboratorio de Ecotono; Argentin

    A comparison of classification techniques for monitoring and mapping land cover and land use changes in the subtropical region of Thai Nguyen, Vietnam : a thesis presented in partial fulfilment of the requirements for the degree of Master of Environmental Management at Massey University, Palmerston North, New Zealand

    Get PDF
    Deriving land cover/land-use information from earth observation satellite data is one of the most common applications for environmental monitoring, evaluation and management. Many parametric and non-parametric classification algorithms have been developed and applied to such applications. This study looks at the classification accuracies of three algorithms for different spatial and spectral resolution data. The performance of Random Forest (RF) was compared to Maximum Likelihood (MLC) and Artificial Neural Network (ANN) algorithms for the separation of subtropical land cover/land-use categories using Sentinel-2 and Landsat 8 data. The overall, producers’ and users’ accuracies were derived from the confusion matrix, while local land use statistics were also collected to evaluate the accuracy of classified images. The accuracy assessment showed the RF algorithm regularly outperformed the MLC and ANN in both types of imagery data (>90%). This approach also exhibited potential in dealing with the challenge of separating similar man-made features such as urban/built-up and mining extraction classes. The ANN algorithm had the lowest accuracy among the three classification algorithms, while Landsat 8 imagery was most suitable for the classification of subtropical mixed and complex landscapes. As the RF algorithm demonstrated a robustness and potential for mapping subtropical land cover/land-use, this study chose it to monitor and map temporal land cover/land-use changes in Thai Nguyen, Vietnam between 2000 and 2016. The results of this temporal monitoring revealed that there were substantial changes in land cover/land use over the course of 16 years. Agricultural and forest land decreased, while urban and mining extraction land expanded significantly, and water increased slightly. Changes in land cover/land-use are strongly associated with geographic locations. The conversion of agriculture and forest into urban/builtup and mining extraction land was detected largely in the Thai Nguyen central city and southern regions. In addition, further GIS analysis revealed that approximately 69.6% (100.2km2) of new built-up areas had occurred within 2km of primary roads, and nearly 96% (137.6km2) of new built-up expansion was detected within a 5-km buffer of the main roads. This study also demonstrates the potential of multi-temporal Landsat data and the combination of remote sensing, GIS and R programming to provide a timely, accurate and economical means to map and analyse temporal changes for long-term local land use development planning. Keywords: Random forest; Land cover mapping; Remote Sensing; Vietna

    Benchmark of machine learning methods for classification of a Sentinel-2 image

    Get PDF
    Thanks to mainly ESA and USGS, a large bulk of free images of the Earth is readily available nowadays. One of the main goals of remote sensing is to label images according to a set of semantic categories, i.e. image classification. This is a very challenging issue since land cover of a specific class may present a large spatial and spectral variability and objects may appear at different scales and orientations. In this study, we report the results of benchmarking 9 machine learning algorithms tested for accuracy and speed in training and classification of land-cover classes in a Sentinel-2 dataset. The following machine learning methods (MLM) have been tested: linear discriminant analysis, k-nearest neighbour, random forests, support vector machines, multi layered perceptron, multi layered perceptron ensemble, ctree, boosting, logarithmic regression. The validation is carried out using a control dataset which consists of an independent classification in 11 land-cover classes of an area about 60 km2, obtained by manual visual interpretation of high resolution images (20 cm ground sampling distance) by experts. In this study five out of the eleven classes are used since the others have too few samples (pixels) for testing and validating subsets. The classes used are the following: (i) urban (ii) sowable areas (iii) water (iv) tree plantations (v) grasslands. Validation is carried out using three different approaches: (i) using pixels from the training dataset (train), (ii) using pixels from the training dataset and applying cross-validation with the k-fold method (kfold) and (iii) using all pixels from the control dataset. Five accuracy indices are calculated for the comparison between the values predicted with each model and control values over three sets of data: the training dataset (train), the whole control dataset (full) and with k-fold cross-validation (kfold) with ten folds. Results from validation of predictions of the whole dataset (full) show the random forests method with the highest values; kappa index ranging from 0.55 to 0.42 respectively with the most and least number pixels for training. The two neural networks (multi layered perceptron and its ensemble) and the support vector machines - with default radial basis function kernel - methods follow closely with comparable performanc

    Mapping of Aedes albopictus abundance at a local scale in Italy

    Get PDF
    Given the growing risk of arbovirus outbreaks in Europe, there is a clear need to better describe the distribution of invasive mosquito species such as Aedes albopictus. Current challenges consist in simulating Ae. albopictus abundance, rather than its presence, and mapping its simulated abundance at a local scale to better assess the transmission risk of mosquito-borne pathogens and optimize mosquito control strategy. During 2014–2015, we sampled adult mosquitoes using 72 BG-Sentinel traps per year in the provinces of Belluno and Trento, Italy. We found that the sum of Ae. albopictus females collected during eight trap nights from June to September was positively related to the mean temperature of the warmest quarter and the percentage of artificial areas in a 250 m buffer around the sampling locations. Maps of Ae. albopictus abundance simulated from the most parsimonious model in the study area showed the largest populations in highly artificial areas with the highest summer temperatures, but with a high uncertainty due to the variability of the trapping collections. Vector abundance maps at a local scale should be promoted to support stakeholders and policy-makers in optimizing vector surveillance and control

    Deteksi Alih Fungsi Lahan Padi Sawah Menggunakan Sentinel-2 dan Google Earth Engine di Kota Serang, Provinsi Banten

    Get PDF
    Land is one of the main factors in rice production. However, the transfer of agricultural land functions to other sectors continues and becomes a challenge in the food supply in Indonesia. Serang City is one of the rice-producing areas in Banten Province. This study aims to analyze changes in the transfer of rice field functions to other sectors by mapping rice field cover using Sentinel-2 satellite imagery in 2021 compared to 2019 with the Random Forest method by using Google Earth Engine (GEE) applications and cloud computing support. The study results showed that the cover of rice fields in Serang City in 2021 decreased by 602.87 ha (-7.20%) compared to 2019 from the total land cover. Land cover in other vegetation was also reduced by 242 ha (-2.45%), while urban land cover in 2021 increased by 781.82 ha (10.89%). This study shows that there has been a change in land transfer in Serang City due to urban expansion in 3 years, as well as that the use of GEE can streamline monitoring of changes in land transfer and land use cover.   Keywords: rice field, Google Earth Engine, Sentinel-
    • …
    corecore