573 research outputs found

    Brains in interaction

    Get PDF
    Wanneer twee mensen met elkaar communiceren, dan ontstaat er een soort tijdelijke verbinding tussen hen. Deze verbinding bestaat uit een keten van gebeurtenissen en begint bijvoorbeeld bij de hersenactiviteit in de motorische cortex van de ene persoon. Deze activiteit leidt tot gedrag, bijvoorbeeld het maken van een gebaar, dat wordt gezien door de andere persoon. Deze bekijkt en interpreteert dit gebaar wat leidt tot activiteit in de visuele, sensorische en associatieve cortices. Dit kan dan weer leiden tot hersenactiviteit in de motorische cortex, tot een ander gebaar en zo verder. Dit proefschrift beschrijft een hersenonderzoek naar zo’n dergelijke indirecte verbinding tussen twee mensen. Voordat ik in ga op het onderzoek wat we hebben uitgevoerd, is het belangrijk om iets te weten over de achtergrond en inspiratie waarop dit onderzoek is gebaseerd. De afgelopen jaren zijn er twee belangrijke ideeën ontwikkelt over hoe mensen elkaar begrijpen en met elkaar kunnen communiceren: het idee van een spiegelsysteem en een ‘redeneersysteem’. Deze twee ideeën vormen de basis van dit onderzoek en worden beschreven in de volgende paragraven. Verder heeft de ontwikkeling van ‘Granger causaliteit’, een analysemethode om verbindingen tussen hersengebieden vast te stellen ook een belangrijke rol gespeeld, deze wordt hierna beschreven. HE T S P I EGE L S Y S T E EM Het idee van spiegelen is dat ons brein de handelingen van andere mensen ‘nabootst’. Aan de basis van dit idee staat de ontdekking van spiegelneuronen (‘mirror neurons’) in de jaren negentig (Gallese et al., 1996; Pellegrino et al., 1992). Deze spiegelneuronen zijn min of meer per toeval ontdekt in een lab in Parma tijdens het meten van neuronen in het gebied F5 (ventrale premotorische cortex) van deMakaak aap. Een onderzoeker merkte op dat deze neuronen niet alleen reageerden op het moment dat de aap zelf een pinda oppakte, maar ook op het moment dat de aap naar de onderzoeker keek terwijl deze een pinda oppakte. Het was bekend dat deze neuronen betrokken zijn bij het uitvoeren van doelgerichte handelingen met de handen en met de mond. Maar nu werd opeens duidelijk dat deze gebieden ook sensorische eigenschappen bezitten (Kurata and Tanji, 1986; Rizzolatti et al., 1988). Deze neuronen representeren hiermee zowel het uitvoeren van een handeling als de waarneming van die handeling. De ontdekking van spiegelneuronen had een grote impact, omdat hiermee het vermoeden werd bevestigd dat waarnemen en handelen sterk aan elkaar gekoppeld zijn. Dit idee speelde al langer een rol in psychologische theorieën. James Gibson beweerde bijvoorbeeld dat perceptie bestaat uit het direct waarnemen van handelingsmogelijkheden (Gibson, 1986). Kort na de eerste ontdekking van spiegelneuronen wilde men weten of de menselijke hersenen ook zo’n dergelijk mechanisme bezitten. Omdat het meten van een individuele neuron vrijwel niet mogelijk is zonder een brein te beschadigen, richtten onderzoeken zich op de vraag of er wellicht hersengebieden bestaan die activiteit laten zien tijdens zowel het uitvoeren als het waarnemen van een handeling (Buccino et al., 2001; Grafton et al., 1996; Grèzes et al., 1998; Grèzes and Decety, 2001; Grèzes et al., 2003; Nishitani and Hari, 2000, 2002; Perani et al., 2001; Gazzola et al., 2007b,a; Gazzola and Keysers, 2008). Dat blijkt inderdaad zo te zijn en de gebieden met deze eigenschap vormen samen het menselijke spiegelsysteem (Keysers and Gazzola, 2009). Deze gebieden zijn de ventrale en dorsale premotorische cortex, de inferieure parietale cortex en de middelste superieure temporele gyrus (zie Figuur 3). Er bestaan overigens niet alleen spiegelgebieden die een overlap in activiteit laten zien voor het uitvoeren en waarnemen van handelingen, maar ook voor het ervaren en het waarnemen van emoties en sensaties, zoals walging, aanraking en pijn (Wicker et al., 2003; Keysers and Perrett, 2004; Singer et al., 2004; Bastiaansen et al., 2009). Innovatieve experimenten, die bijvoorbeeld gebruikmaken van ‘cross-modal repetition suppression’, hebben inmiddels wetenschappelijk bewijs geleverd voor het bestaan van individuele spiegelneuronen in de menselijke hersenen (Kilner et al., 2009; Lingnau et al., 2009; Chong et al., 2008;Mukamel et al., 2010). Doordat spiegelneuronen een directe link leggen tussen de handelingen die we zelf uitvoeren en de handelingen die we anderen zien doen, wordt aangenomen dat spiegelneuronen een functie hebben in het begrijpen van wat de ander aan het doen is (zie Rizzolatti and Sinigaglia, 2010, voor een recent overzicht van de literatuur). Bij het zien van een handeling van iemand anders wordt de motorische representatie van deze handeling in de eigen hersenen actief, alsof deze handeling zelf wordt uitgevoerd. Dit idee vormt de kern van de simulatietheorie: we begrijpen wat een ander doet doordat we deze handeling als het ware simuleren in onze eigen hersenen (Goldman, 1992; Gibson, 1986; Gallese, 2003). Belangrijk voor het onderzoek in dit proefschrift is dat de simulatietheorie een voorspellingmaakt over spiegelneuronen. Deze theorie beweert namelijk dat spiegelneuronen in het brein van degene die een handeling waarneemt resoneren met de spiegelneuronen van degene die de handeling uitvoert. De term‘resonantie’ wordt hier losjes gebruikt en er wordt mee bedoeld dat de pieken en dalen in de hersenactiviteit van het motorsysteem van de ene persoon overeenkomstige pieken en dalen veroorzaakt in de hersenactiviteit van het motorsysteem in de andere persoon (Gallese and Goldman, 1998; Gallese et al., 2004; Rizzolatti et al., 2001). In Hoofdstuk 4 van dit proefschrift wordt deze bewering over resonantie onderzocht. HE T REDENE ERS Y S T E EM Naast dit spiegelmechanisme waarmee we anderen begrijpen, bezitten we ook een meer reflectief vermogen om na te denken over wat er in anderen omgaat. Denk bijvoorbeeld aan een typische scene uit een soap, zoals The Bold and the Beautiful: Taylor and Ridge staan op het punt om met elkaar in het huwelijk te treden. Zonder dat Taylor dit weet, staat Brooke op het punt om te vertellen dat ze zwanger is van Ridge, hopende dat ze hiermee de bruiloft kan verhinderen. Om zo’n situatie te kunnen begrijpen en te kunnen waarderen, moeten we in staat zijn om bij te houden wat de verschillende personen wel en niet weten en wat ze zullen denken op het moment dat ze het te horen zullen krijgen. Dit soort bewuste denkprocessen wordt in de literatuur wel ‘Theory of Mind’ (ToM) genoemd (Premack andWoodruff, 1978; Wimmer and Perner, 1983) en vindt plaats in andere gebieden dan de spiegelgebieden (Frith and Frith, 1999, 2006). Het zijn de ‘redeneergebieden’ (zie Figuur 3), die actief zijn tijdens bijvoorbeeld het interpreteren van (strip)verhalen en het nadenken over jezelf en anderen (Amodio and Frith, 2006; Fletcher et al., 1995; Frith and Frith, 2006, 2003; Gallagher et al., 2000; Gusnard et al., 2001). De belangrijkste twee gebieden van dit redeneersysteem zijn de ventrale mediale prefrontale cortex en de temporeelparietale junctie. Over the decades, two important networks in the brain have been identified about how people interact: the mirror system and the mentalizing network. This thesis investigates how these networks work together during social interaction. We performed an experiment in which brain activity of two persons was measured while they engaged in a social communication game (Charades). Results showed that the mirror system is highly involved during the game, while the main mentalizing area does not show any involvement. We then extended a connectivity analysis, Granger causality, which is usually applied within one brain, to a between-brain analysis. With this method, we used brain activity of the gesturer to map regions in the brain of the guesser, whose brain activity has a Granger-causal relation to that of the gesturer. The mirror system of the gesturer shows a Granger-causal relation to the mirror system of the guesser, but also to the main mentalizing area of the guesser. This means that, even while this mentalizing area does not show involvement when analyzed using a classic method, it does show a temporal relationship with the brain activity of the gesturer. We furthermore performed simulations to investigate a possible confound of Granger causality: inter- and intrasubject variability in hemodynamic responses. Results show high sensitivity and accuracy for Granger causality between-brains, while sensitivity of within-brain Granger causality remains low. However, if a Grangercausality is found, this indicates the correct underlying direction in 80% of the cases. Finally, we used within-brain Granger causality to investigate how areas in the mirror system influence each other during gesturing and guessing.

    Brains in interaction

    Get PDF

    Neural correlates of the processing of co-speech gestures

    Get PDF
    In communicative situations, speech is often accompanied by gestures. For example, speakers tend to illustrate certain contents of speech by means of iconic gestures which are hand movements that bear a formal relationship to the contents of speech. The meaning of an iconic gesture is determined both by its form as well as the speech context in which it is performed. Thus, gesture and speech interact in comprehension. Using fMRI, the present study investigated what brain areas are involved in this interaction process. Participants watched videos in which sentences containing an ambiguous word (e.g. She touched the mouse) were accompanied by either a meaningless grooming movement, a gesture supporting the more frequent dominant meaning (e.g. animal) or a gesture supporting the less frequent subordinate meaning (e.g. computer device). We hypothesized that brain areas involved in the interaction of gesture and speech would show greater activation to gesture-supported sentences as compared to sentences accompanied by a meaningless grooming movement. The main results are that when contrasted with grooming, both types of gestures (dominant and subordinate) activated an array of brain regions consisting of the left posterior superior temporal sulcus (STS), the inferior parietal lobule bilaterally and the ventral precentral sulcus bilaterally. Given the crucial role of the STS in audiovisual integration processes, this activation might reflect the interaction between the meaning of gesture and the ambiguous sentence. The activations in inferior frontal and inferior parietal regions may reflect a mechanism of determining the goal of co-speech hand movements through an observation-execution matching process

    Playing Charades in the fMRI: Are Mirror and/or Mentalizing Areas Involved in Gestural Communication?

    Get PDF
    Communication is an important aspect of human life, allowing us to powerfully coordinate our behaviour with that of others. Boiled down to its mere essentials, communication entails transferring a mental content from one brain to another. Spoken language obviously plays an important role in communication between human individuals. Manual gestures however often aid the semantic interpretation of the spoken message, and gestures may have played a central role in the earlier evolution of communication. Here we used the social game of charades to investigate the neural basis of gestural communication by having participants produce and interpret meaningful gestures while their brain activity was measured using functional magnetic resonance imaging. While participants decoded observed gestures, the putative mirror neuron system (pMNS: premotor, parietal and posterior mid-temporal cortex), associated with motor simulation, and the temporo-parietal junction (TPJ), associated with mentalizing and agency attribution, were significantly recruited. Of these areas only the pMNS was recruited during the production of gestures. This suggests that gestural communication relies on a combination of simulation and, during decoding, mentalizing/agency attribution brain areas. Comparing the decoding of gestures with a condition in which participants viewed the same gestures with an instruction not to interpret the gestures showed that although parts of the pMNS responded more strongly during active decoding, most of the pMNS and the TPJ did not show such significant task effects. This suggests that the mere observation of gestures recruits most of the system involved in voluntary interpretation

    Development of the Mu Rhythm: Understanding Function Through Translational Research

    Get PDF
    The incidental discovery of mirror neurons (MN) has renewed interest in motor theories of development and has sparked considerable debate as to the existence and potential function of mirror neurons in humans. The use of invasive single-cell recordings, however, has precluded identification of single MNs in humans or developmental populations of non-human primates. Non-invasive techniques, such as the modulation of the mu rhythm in the electroencephalogram (EEG) of young infants and children, have demonstrated the existence of an action observation/execution matching system in humans. Moreover, the mu rhythm has become an effective tool for addressing questions of MN system ontogeny in other species. The aim of this project is to address two questions that have thus far remained untested. The goal of study one is to address the question of whether or not we can identify activation of the human action observation/execution system under conditions in which the participants cannot see themselves executing a grasping action. Evidence from study one further validates our EEG measures as representing activation of the putative human MN system. The goal of study two is to examine the origins of MNs in 3-day-old mother- and nursery-reared infant rhesus macaques and the extent to which differential experience may contribute to the MN system during episodes of neonatal imitation. The results of study one demonstrated activation of the putative human MN system to actions completed in the absence of visual feedback in both human adults and infants. The magnitude of mu rhythm activity in infants was significantly less than in the adults suggesting a role of experience in the formation of the putative human MN system. The results from study two further emphasized the role of early experience showing significantly greater modulation of the mu rhythm in the mother-reared compared to the nursery-reared infants to the observation of socio-affiliative facial gestures. The evidence of studies one and two are discussed within a developmental framework of ongoing behavioral development and highlight the role experience plays, not in the foundation of, but rather the elaboration of the MN system

    Visual-motor interactions during action observation are shaped by cognitive context

    Get PDF
    Interactions between the visual system and the motor system during action observation are important for functions such as imitation and action understanding. Here, we asked whether such processes might be influenced by the cognitive context in which actions are performed. We recorded ERPs in a delayed go/no-go task known to induce bidirectional interference between the motor system and the visual system (visuomotor interference). Static images of hand gestures were presented as go stimuli after participants had planned either a matching (congruent) or nonmatching (incongruent) action. Participants performed the identical task in two different cognitive contexts: In one, they focused on the visual image of the hand gesture shown as the go stimulus (image context), whereas in the other, they focused on the hand gesture they performed (action context). We analyzed the N170 elicited by the go stimulus to test the influence of action plans on action observation (motor-to-visual priming). We also analyzed movement-related activity following the go stimulus to examine the influence of action observation on action planning (visual-to-motor priming). Strikingly, the context manipulation reversed the direction of the priming effects: We found stronger motor-to-visual priming in the action context compared with the image context and stronger visual-to-motor priming in the image context compared with the action context. Taken together, our findings indicate that neural interactions between motor and visual processes for executed and observed actions can change depending on task demands and are sensitive to top-down control according to the context

    Motor observation, motor performance, and motor imagery : an ERP study.

    Get PDF
    Two major theoretical models, Direct Mapping and Functional Equivalence, suggest that the observation of action and imagery of action, respectively, involve activation of similar motor related areas. Despite the wealth of evidence that supports these two perspectives, the degree to which these motor-related actions overlap is still only vaguely defined. The present investigation sought to assess both the spatial and temporal characteristics of the brain activity involved in these motor related conditions. Specifically, the present study used ERP technology to assess the neural substrates of Motor Observation, Motor Performance, and Motor Imagery. Participants viewed images depicting two human grasping motions, whole hand grasping or precision finger-to-thumb grasping. Participants were to report, perform, or imagine performing the observed action depicted in the target image. Ongoing EEG was time-locked to the presentation of the target image. The EEG data were filtered, segmented, submitted to a series of artifact correction procedures, then averaged. Subsequently, the averaged data were subject a two-step sequential principal component analysis. These were then subjected to repeated measures ANOVAs. Additional analyses included amplitude and latency measures, obtained from selected regions across different conditions. These measures were compared and examined for group differences. In addition, Low Resolution Brain Electromagnetic Tomography was used to elucidate the underlying neural activity. Specifically, all three of the motor related experimental conditions were expected to show increased activation of motor related areas on the contralateral hemisphere (left hemisphere) to the instructed action, particularly in the Primary Motor Cortex and Primary Somatosensory Cortex, and increased activation in the Supplementary Motor Area, relative to a nonmotor control condition. However, the statistical analyses failed to support these hypotheses. In the end, a greater understanding of these processes through scientific advances further develops and improves both interventions and treatments aimed at bettering the lives of those suffering from a myriad of psychological, physical and psychophysical disorders resulting from many psychobiological causes including stroke, dismemberment, physical injury, and cognitive dysfunction. While the present study failed to further elucidate these neural mechanisms, this area of study is increasingly important and beneficial to wide ranging areas of medicine, neuroscience, and cognitive and sports psychology

    The effects of auditory-motor mapping training on speech output of nonverbal elementary age students with autism spectrum disorder

    Get PDF
    The purpose of this study was to investigate the effect of auditory-motor mapping training (AMMT) on the speech output of nonverbal elementary age students with autism spectrum disorder (ASD). Auditory-motor mapping training facilitates the development of association between sounds and articulatory actions using intonation and bimanual drumming activities. This intervention purportedly stimulates neural networks that may be dysfunctional in persons with ASD. Seven nonverbal children with a primary diagnosis of ASD participated in twelve 20-minute weekly sessions consisting of engagement with 15 predetermined target words through imitation, singing, and motor activity (all components of AMMT). Assessments were made at baseline, mid-point, and post AMMT intervention sessions. These probes were used to determine the effects of AMMT on expressive language abilities of speech output. A null hypothesis was tested to determine the significance of the independent variables of singing, showing visual cues, and drumming on the speech output of nonverbal children with ASD, age five through eight years (p = .05). Additionally, effects of AMMT on children's development of social communication skills also were examined at the end of each intervention session. Results of the study revealed no significant effect of the AMMT intervention on the speech output of elementary age children with ASD from the best baseline to probe one and probe two (p = .424), therefore the null hypothesis that there was no significant effect of auditory-motor mapping training (AMMT) on speech output of nonverbal elementary children with ASD was retained. Additionally, a comparison of the growth of the independent ‘High Five’ gesture from session one to session twelve yielded no statistical significant results (p > .05). The McNemar chi-square was used to compare this secondary AMMT effect from sessions two to eleven, and revealed a positive growth trend that approached a significant outcome associated with the children's social communication responses (p =.063). Although significant changes in the nonverbal children's speech output were not substantiated in this study, there were areas of growth for all children in this study that were highlighted through qualitative analysis and descriptive narratives. Confounding variables that possibly affected children's speech output and social communication development were addressed. Additionally, recommendations were made for future research involving music as a vehicle for speech development for nonverbal elementary age children with ASD

    Being an agent or an observer: Different spectral dynamics revealed by MEG

    Get PDF
    Several neuroimaging studies reported that a common set of regions is recruited during action observation and execution and it has been proposed that the modulation of the μ rhythm, in terms of oscillations in the alpha and beta bands might represent the electrophysiological correlate of the underlying brain mechanisms. However, the specific functional role of these bands within the μ rhythm is still unclear. Here, we used magnetoencephalography (MEG) to analyze the spectral and temporal properties of the alpha and beta bands in healthy subjects during an action observation and execution task. We associated the modulation of the alpha and beta power to a broad action observation network comprising several parieto-frontal areas previously detected in fMRI studies. Of note, we observed a dissociation between alpha and beta bands with a slow-down of beta oscillations compared to alpha during action observation. We hypothesize that this segregation is linked to a different sequence of information processing and we interpret these modulations in terms of internal models (forward and inverse). In fact, these processes showed opposite temporal sequences of occurrence: anterior-posterior during action (both in alpha and beta bands) and roughly posterior-anterior during observation (in the alpha band). The observed differentiation between alpha and beta suggests that these two bands might pursue different functions in the action observation and execution processes

    Modulating mimetic preference with theta burst stimulation of the inferior parietal cortex

    Get PDF
    We like an object more when we see someone else reaching for it. To what extent is action observation causally linked to object valuation? In this study, we set out to answer to this question by applying continuous theta burst stimulation (cTBS) over the left inferior parietal lobule (IPL). Previous studies pointed to this region as critical in the representation of others' actions and in tool manipulation. However, it is unclear to what extent IPL's involvement simply reflects action observation, rather than a casual role in objects' valuation. To clarify this issue, we measured cTBS-dependent modulations of participants' "mimetic preference ratings", i.e., the difference between the ratings of pairs of familiar objects that were (vs. were not) reached out for by other individuals. Our result shows that cTBS increased mimetic preference ratings for tools, when compared to a control condition without stimulation. This effect was selective for items that were reached for or manipulated by another individual, whilst it was not detected in non-tool objects. Although preliminary, this finding suggests that the automatic and covert simulation of an observed action, even when there is no intention to act on an object, influences explicit affective judgments for objects. This work supports embodied cognition theories by substantiating that our subjective preference is grounded in action
    • …
    corecore