170,415 research outputs found

    The Research Space: using the career paths of scholars to predict the evolution of the research output of individuals, institutions, and nations

    Full text link
    In recent years scholars have built maps of science by connecting the academic fields that cite each other, are cited together, or that cite a similar literature. But since scholars cannot always publish in the fields they cite, or that cite them, these science maps are only rough proxies for the potential of a scholar, organization, or country, to enter a new academic field. Here we use a large dataset of scholarly publications disambiguated at the individual level to create a map of science-or research space-where links connect pairs of fields based on the probability that an individual has published in both of them. We find that the research space is a significantly more accurate predictor of the fields that individuals and organizations will enter in the future than citation based science maps. At the country level, however, the research space and citations based science maps are equally accurate. These findings show that data on career trajectories-the set of fields that individuals have previously published in-provide more accurate predictors of future research output for more focalized units-such as individuals or organizations-than citation based science maps

    The Extraction of Community Structures from Publication Networks to Support Ethnographic Observations of Field Differences in Scientific Communication

    Full text link
    The scientific community of researchers in a research specialty is an important unit of analysis for understanding the field specific shaping of scientific communication practices. These scientific communities are, however, a challenging unit of analysis to capture and compare because they overlap, have fuzzy boundaries, and evolve over time. We describe a network analytic approach that reveals the complexities of these communities through examination of their publication networks in combination with insights from ethnographic field studies. We suggest that the structures revealed indicate overlapping sub- communities within a research specialty and we provide evidence that they differ in disciplinary orientation and research practices. By mapping the community structures of scientific fields we aim to increase confidence about the domain of validity of ethnographic observations as well as of collaborative patterns extracted from publication networks thereby enabling the systematic study of field differences. The network analytic methods presented include methods to optimize the delineation of a bibliographic data set in order to adequately represent a research specialty, and methods to extract community structures from this data. We demonstrate the application of these methods in a case study of two research specialties in the physical and chemical sciences.Comment: Accepted for publication in JASIS

    Emerging Search Regimes: Measuring Co-evolutions among Research, Science, and Society

    Full text link
    Scientometric data is used to investigate empirically the emergence of search regimes in Biotechnology, Genomics, and Nanotechnology. Complex regimes can emerge when three independent sources of variance interact. In our model, researchers can be considered as the nodes that carry the science system. Research is geographically situated with site-specific skills, tacit knowledge and infrastructures. Second, the emergent science level refers to the formal communication of codified knowledge published in journals. Third, the socio-economic dynamics indicate the ways in which knowledge production relates to society. Although Biotechnology, Genomics, and Nanotechnology can all be characterised by rapid growth and divergent dynamics, the regimes differ in terms of self-organization among these three sources of variance. The scope of opportunities for researchers to contribute within the constraints of the existing body of knowledge are different in each field. Furthermore, the relevance of the context of application contributes to the knowledge dynamics to various degrees

    Traffic medicine–related research : a scientometric analysis

    Get PDF
    OBJECTIVE: Traffic crashes and related injuries are important causes of morbidity and mortality and impose insofar an important burden on public health. However, research in this area is often under-funded. The aim of this study was to analyse quantity, evolution and geographic distribution of traffic medicine-related research. This multi-sectorial field covers both transport and health care sectors. DESIGN: A scientometric approach in combination with visualizing density equalizing mapping was used to analyse published data related to the field of traffic medicine between 1900 and 2008 within the "Web of Science" (WoS) database. RESULTS: In total, 5,193 traffic medicine-associated items were produced between 1900 and 2008. The United States was found to have the highest research activity with a production of n = 2,330 published items, followed by Germany (n = 298) and Canada (n = 219). Cooperation analyses resulted in a peak of published multilateral cooperations in the year of 2003. The country with the highest multilateral activity was the USA. The average number of cited references per publication varied heavily over the last 20 years with a maximum of 27.67 in 1995 and a minimum of 15.08 in 1998. Also, a further in-depth analysis was performed with a focus solely on public health aspects which revealed similar trends. CONCLUSIONS: Summarizing the present data it can be stated traffic medicine-related research productivity grows annually. Also, an active networking between countries is present. The data of the present study may be used by scientific organisations in order to gain detailed information about research activities in this field which is extremely important for public health

    The Citation Field of Evolutionary Economics

    Get PDF
    Evolutionary economics has developed into an academic field of its own, institutionalized around, amongst others, the Journal of Evolutionary Economics (JEE). This paper analyzes the way and extent to which evolutionary economics has become an interdisciplinary journal, as its aim was: a journal that is indispensable in the exchange of expert knowledge on topics and using approaches that relate naturally with it. Analyzing citation data for the relevant academic field for the Journal of Evolutionary Economics, we use insights from scientometrics and social network analysis to find that, indeed, the JEE is a central player in this interdisciplinary field aiming mostly at understanding technological and regional dynamics. It does not, however, link firmly with the natural sciences (including biology) nor to management sciences, entrepreneurship, and organization studies. Another journal that could be perceived to have evolutionary acumen, the Journal of Economic Issues, does relate to heterodox economics journals and is relatively more involved in discussing issues of firm and industry organization. The JEE seems most keen to develop theoretical insights

    How are topics born? Understanding the research dynamics preceding the emergence of new areas

    Get PDF
    The ability to promptly recognise new research trends is strategic for many stake- holders, including universities, institutional funding bodies, academic publishers and companies. While the literature describes several approaches which aim to identify the emergence of new research topics early in their lifecycle, these rely on the assumption that the topic in question is already associated with a number of publications and consistently referred to by a community of researchers. Hence, detecting the emergence of a new research area at an embryonic stage, i.e., before the topic has been consistently labelled by a community of researchers and associated with a number of publications, is still an open challenge. In this paper, we begin to address this challenge by performing a study of the dynamics preceding the creation of new topics. This study indicates that the emergence of a new topic is anticipated by a significant increase in the pace of collaboration between relevant research areas, which can be seen as the ‘parents’ of the new topic. These initial findings (i) confirm our hypothesis that it is possible in principle to detect the emergence of a new topic at the embryonic stage, (ii) provide new empirical evidence supporting relevant theories in Philosophy of Science, and also (iii) suggest that new topics tend to emerge in an environment in which weakly interconnected research areas begin to cross-fertilise

    Mapping Cosmic Dawn and Reionization: Challenges and Synergies

    Get PDF
    Cosmic dawn and the Epoch of Reionization (EoR) are among the least explored observational eras in cosmology: a time at which the first galaxies and supermassive black holes formed and reionized the cold, neutral Universe of the post-recombination era. With current instruments, only a handful of the brightest galaxies and quasars from that time are detectable as individual objects, due to their extreme distances. Fortunately, a multitude of multi-wavelength intensity mapping measurements, ranging from the redshifted 21 cm background in the radio to the unresolved X-ray background, contain a plethora of synergistic information about this elusive era. The coming decade will likely see direct detections of inhomogenous reionization with CMB and 21 cm observations, and a slew of other probes covering overlapping areas and complementary physical processes will provide crucial additional information and cross-validation. To maximize scientific discovery and return on investment, coordinated survey planning and joint data analysis should be a high priority, closely coupled to computational models and theoretical predictions.Comment: 5 pages, 1 figure, submitted to the Astro2020 Decadal Survey Science White Paper cal

    The view from elsewhere: perspectives on ALife Modeling

    Get PDF
    Many artificial life researchers stress the interdisciplinary character of the field. Against such a backdrop, this report reviews and discusses artificial life, as it is depicted in, and as it interfaces with, adjacent disciplines (in particular, philosophy, biology, and linguistics), and in the light of a specific historical example of interdisciplinary research (namely cybernetics) with which artificial life shares many features. This report grew out of a workshop held at the Sixth European Conference on Artificial Life in Prague and features individual contributions from the workshop's eight speakers, plus a section designed to reflect the debates that took place during the workshop's discussion sessions. The major theme that emerged during these sessions was the identity and status of artificial life as a scientific endeavor
    corecore