249,137 research outputs found

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page

    Supporting decision-making in the building life-cycle using linked building data

    Get PDF
    The interoperability challenge is a long-standing challenge in the domain of architecture, engineering and construction (AEC). Diverse approaches have already been presented for addressing this challenge. This article will look into the possibility of addressing the interoperability challenge in the building life-cycle with a linked data approach. An outline is given of how linked data technologies tend to be deployed, thereby working towards a ā€œmore holisticā€ perspective on the building, or towards a large-scale web of ā€œlinked building dataā€. From this overview, and the associated use case scenarios, we conclude that the interoperability challenge cannot be ā€œsolvedā€ using linked data technologies, but that it can be addressed. In other words, information exchange and management can be improved, but a pragmatic usage of technologies is still required in practice. Finally, we give an initial outline of some anticipated use cases in the building life-cycle in which the usage of linked data technologies may generate advantages over existing technologies and methods

    Ontology mapping: the state of the art

    No full text
    Ontology mapping is seen as a solution provider in today's landscape of ontology research. As the number of ontologies that are made publicly available and accessible on the Web increases steadily, so does the need for applications to use them. A single ontology is no longer enough to support the tasks envisaged by a distributed environment like the Semantic Web. Multiple ontologies need to be accessed from several applications. Mapping could provide a common layer from which several ontologies could be accessed and hence could exchange information in semantically sound manners. Developing such mapping has beeb the focus of a variety of works originating from diverse communities over a number of years. In this article we comprehensively review and present these works. We also provide insights on the pragmatics of ontology mapping and elaborate on a theoretical approach for defining ontology mapping

    A Shared Ontology Approach to Semantic Representation of BIM Data

    Get PDF
    Architecture, engineering, construction and facility management (AEC-FM) projects involve a large number of participants that must exchange information and combine their knowledge for successful completion of a project. Currently, most of the AEC-FM domains store their information about a project in text documents or use XML, relational, or object-oriented formats that make information integration difficult. The AEC-FM industry is not taking advantage of the full potential of the Semantic Web for streamlining sharing, connecting, and combining information from different domains. The Semantic Web is designed to solve the information integration problem by creating a web of structured and connected data that can be processed by machines. It allows combining information from different sources with different underlying schemas distributed over the Internet. In the Semantic Web, all data instances and data schema are stored in a graph data store, which makes it easy to merge data from different sources. This paper presents a shared ontology approach to semantic representation of building information. The semantic representation of building information facilitates finding and integrating building information distributed in several knowledge bases. A case study demonstrates the development of a semantic based building design knowledge base

    Population mapping in informal settlements with high-resolution satellite imagery and equitable ground-truth

    Get PDF
    We propose a generalizable framework for the population estimation of dense, informal settlements in low-income urban areasā€“so called ā€™slumsā€™ā€“using high-resolution satellite imagery. Precise population estimates are a crucial factor for efficient resource allocations by government authorities and NGOā€™s, for instance in medical emergencies. We utilize equitable ground-truth data, which is gathered in collaboration with local communities: Through training and community mapping, the local population contributes their unique domain knowledge, while also maintaining agency over their data. This practice allows us to avoid carrying forward potential biases into the modeling pipeline, which might arise from a less rigorous ground-truthing approach. We contextualize our approach in respect to the ongoing discussion within the machine learning community, aiming to make real-world machine learning applications more inclusive, fair and accountable. Because of the resource intensive ground-truth generation process, our training data is limited. We propose a gridded population estimation model, enabling flexible and customizable spatial resolutions. We test our pipeline on three experimental site in Nigeria, utilizing pre-trained and fine-tune vision networks to overcome data sparsity. Our findings highlight the difficulties of transferring common benchmark models to real-world tasks. We discuss this and propose steps forward

    UK utility data integration: overcoming schematic heterogeneity

    Get PDF
    In this paper we discuss syntactic, semantic and schematic issues which inhibit the integration of utility data in the UK. We then focus on the techniques employed within the VISTA project to overcome schematic heterogeneity. A Global Schema based architecture is employed. Although automated approaches to Global Schema definition were attempted the heterogeneities of the sector were too great. A manual approach to Global Schema definition was employed. The techniques used to define and subsequently map source utility data models to this schema are discussed in detail. In order to ensure a coherent integrated model, sub and cross domain validation issues are then highlighted. Finally the proposed framework and data flow for schematic integration is introduced
    • ā€¦
    corecore