766 research outputs found

    Efficiency of remote sensing tools for post-fire management along a climatic gradient

    Get PDF
    P. 553-562Forest managers require reliable tools to evaluate post-fire recovery across different geographic/climatic contexts and define management actions at the landscape scale, which might be highly resource-consuming in terms of data collection. In this sense, remote sensing techniques allow for gathering environmental data over large areas with low collection effort. We aim to assess the applicability of remote sensing tools in post-fire management within and across three mega-fires that occurred in pine fire-prone ecosystems located along an Atlantic-Transition-Mediterranean climatic gradient. Four years after the wildfires, we established 120 2x2m plots in each mega-fire site, where we evaluated: (1) density of pine seedlings, (2) percentage of woody species cover and (3) percentage of dead plant material cover. These variables were modeled following a Bayesian Model Averaging approach on the basis of spectral indices and texture features derived from WorldView-2 satellite imagery at 2 m spatial resolution. We assessed model interpolation and transferability within each mega-fire, as well as model extrapolation between mega-fires along the climatic gradient. Texture features were the predictors that contributed most in all cases. The woody species cover model had the best performance regarding spatial interpolation and transferability within the three study sites, with predictive errors lower than 25% for the two approaches. Model extrapolation between the Transition and Mediterranean sites had low levels of error (from 6% to 19%) for the three field variables, because the landscape in these areas is similar in structure and function and, therefore, in spectral characteristics. However, model extrapolation from the Atlantic site achieved the weakest results (error higher than 30%), due to the large ecological differences between this particular site and the others. This study demonstrates the potential of fine-grained satellite imagery for land managers to conduct post-fire recovery studies with a high degree of generality across different geographic/climatic contexts.S

    An investigation in the use of advanced remote sensing and geographic information system techniques for post-fire impact assessment on vegetation.

    Get PDF
    2006/2007Gli incendi boschivi rappresentano uno dei maggiori problemi ambientali nella regione Mediterranea con vaste superfici colpite ogni estate. Una stima dell’impatto ambientale degli incendi (a breve e a lungo termine) richiede la raccolta di informazioni accurate post-incendio relative al tipo di incendio, all’intensità, alla rigenerazione forestale ed al ripristino della vegetazione. L’utilizzo di tecniche avanzate di telerilevamento può fornire un valido strumento per lo studio di questi fenomeni. L’importanza di queste ricerche è stata più volte sottolineata dalla Commissione Europea che si è concentrata sullo studio degli incendi boschivi ed il loro effetto sulla vegetazione attraverso lo sviluppo di adeguati metodi di stima dell’impatto e di mitigazione. Scopo di questo lavoro è la stima dell’impatto post-incendio sulla vegetazione in ambiente Mediterraneo per mezzo di immagini satellitari ad alta risoluzione, di rilievi a terra e mediante tecniche avanzate di analisi dei dati. Il lavoro ha riguardato lo sviluppo di un sistema per l’integrazione di dati telerilevati ad altissima risoluzione spaziale e spettrale. Per la stima dell’impatto a breve termine, un modello di classificazione ad oggetti è stato sviluppato utilizzando immagini Ikonos ad altissima risoluzione spaziale per cartografare il tipo di incendio, differenziando l’incendio radente dall’incendio di chioma. I risultati mostrano che la classificazione ad oggetti potrebbe essere utilizzata per distinguere con elevata accuratezza (87% di accuratezza complessiva) le due tipologie di incendio, in particolare nei boschi Mediterranei aperti. È stata inoltre valutata la capacità della classificazione ad oggetti di distinguere e cartografare tre livelli di intensità del fuoco utilizzando le immagini Ikonos e l’accuratezza del risultato è stimata all’ 83%. Per la stima dell’impatto a lungo termine, la mappatura della rigenerazione post-incendio (pino) e la ripresa della vegetazione arbustiva sono state valutate mediante tre approcci: 1) la classificazione ad oggetti di immagini ad altissima risoluzione QuickBird che ha permesso di mappare la ripresa della vegetazione e l’impatto sulla copertura a seguito dell’incendio distinguendo due livelli di intensità dell’incendio (accuratezza della classificazione 86%). 2) l’analisi statistica di dati iperspettrali rilevati in campo che ha permesso una riduzione del 97% del volume di dati e la selezione delle migliori 14 bande per discriminare l’età e le specie di pino e le 18 migliori bande per la caratterizzazione delle specie arbustive. Successivamente, i dati iperspettrali Hyperion sono stati utlizzati per mappare la rigenerazione forestale e la ripresa della vegetazione. L’accuratezza complessiva della classificazione è stata del 75.1% considerando due diverse specie di pino ed altre specie vegetali. 3) una classificazione ad oggetti che ha combinato l’analisi dei dati QuickBird ed Hyperion. Si è registrato un aumento dell’accuratezza della classificazione pari all’8.06% rispetto all’utilizzo dei soli dati Hyperion. Complessivamente, si osserva che strumenti avanzati di telerilevamento consentono di raccogliere le informazioni relative alle aree incendiate, la rigenerazione forestale e la ripresa della vegetazione in modo accurato e vantaggioso in termini di costi e tempi.Forest fires are a major environmental problem in the Mediterranean region, where large areas are affected each summer. An assessment of the environmental impact of forest fires (in the short-term and in the long-term) requires the collection of accurate and detailed post-fire information related to fire type, fire severity, forest regeneration and vegetation recovery. Advanced tools in remote sensing provide a powerful tool for the study of this phenomenon. The importance of this work was often emphasized by the European Commission, which focused on the studying of forest fires and their effect on vegetation through the development of appropriate impact assessment and mitigation methods. The aim of this study was to assess the post-fire impact on vegetation in a Mediterranean environment by employing high quality satellite and field data and by using advanced data processing techniques. The work entailed the development of a whole system integrating very high spatial and spectral resolution remotely sensed data. For short-term impact assessment, an object-oriented model was developed using very high spatial resolution Ikonos imagery to map the type of fire, namely, canopy fire and surface fire. The results showed that object-oriented classification could be used to accurately distinguish and map areas of surface and crown fire spread (overall accuracy of 87%), especially that occurring in open Mediterranean forests. Also, the performance of object-based classification in mapping three levels of fire severity by employing high spatial resolution Ikonos imagery was evaluated, and accuracy of the obtained results was estimated to be 83%. As for long-term impact assessment, the mapping of post-fire forest regeneration (pine) and vegetation recovery (shrub) was performed by following three different approaches. First, the developed object-based classification of QuickBird (very high spatial resolution) allowed post-fire vegetation recovery and survival mapping of canopy within two different fire severity levels (86% of classification accuracy). The main effect of fire has been to create a more homogeneous landscape. Second, statistical analysis of field hyperspectral data allowed a 97% reduction in data volume and recommended 14 best narrowbands to discriminate among pine trees (age and species) and 18 bands that best characterize the different shrub species. Then, hyperspectral Hyperion was employed for mapping post-fire forest regeneration and vegetation recovery. The overall classification accuracy was found to be 75.81% when mapping two different regenerated pine species and other species of vegetation recovery. Third, an object-oriented combined analysis of QuickBird and Hyperion was investigated for the same objective. An improvement in classification accuracy of 8.06% was recorded when combining both Hyperion and QuickBird imageries than by using only the Hyperion image. Overall, it was observed that advanced tools in remote sensing provided the necessary means for gathering information about the burned areas, the regenerated forests and the recovered vegetations in a successful and a timely/cost effective manner.XX Ciclo197

    Remote sensing for the Spanish forests in the 21st century: a review of advances, needs, and opportunities

    Get PDF
    [EN] Forest ecosystems provide a host of services and societal benefits, including carbon storage, habitat for fauna, recreation, and provision of wood or non-wood products. In a context of complex demands on forest resources, identifying priorities for biodiversity and carbon budgets require accurate tools with sufficient temporal frequency. Moreover, understanding long term forest dynamics is necessary for sustainable planning and management. Remote sensing (RS) is a powerful means for analysis, synthesis, and report, providing insights and contributing to inform decisions upon forest ecosystems. In this communication we review current applications of RS techniques in Spanish forests, examining possible trends, needs, and opportunities offered by RS in a forestry context. Currently, wall-to-wall optical and LiDAR data are extensively used for a wide range of applications-many times in combination-whilst radar or hyperspectral data are rarely used in the analysis of Spanish forests. Unmanned Aerial Vehicles (UAVs) carrying visible and infrared sensors are gaining ground in acquisition of data locally and at small scale, particularly for health assessments. Forest fire identification and characterization are prevalent applications at the landscape scale, whereas structural assessments are the most widespread analyses carried out at limited extents. Unparalleled opportunities are offered by the availability of diverse RS data like those provided by the European Copernicus programme and recent satellite LiDAR launches, processing capacity, and synergies with other ancillary sources to produce information of our forests. Overall, we live in times of unprecedented opportunities for monitoring forest ecosystems with a growing support from RS technologies.Part of this work was funded by the Spanish Ministry of Science, innovation and University through the project AGL2016-76769-C2-1-R "Influence of natural disturbance regimes and management on forests dynamics. structure and carbon balance (FORESTCHANGE)".Gómez, C.; Alejandro, P.; Hermosilla, T.; Montes, F.; Pascual, C.; Ruiz Fernández, LÁ.; Álvarez-Taboada, F.... (2019). Remote sensing for the Spanish forests in the 21st century: a review of advances, needs, and opportunities. Forest Systems. 28(1):1-33. https://doi.org/10.5424/fs/2019281-14221S133281Ungar S, Pearlman J, Mendenhall J, Reuter D, 2003. Overview of the Earth Observing-1 (EO-1) mission. IEEE T Geosci Remote 41: 1149−1159.Valbuena R, Mauro F, Arjonilla FJ, Manzanera JA, 2011. Comparing Airborne Laser Scanning-Imagery Fusion Methods Based on Geometric Accuracy in Forested Areas. Remote Sens Environ 115(8): 1942-1956.Valbuena R, Mauro F, Rodríguez-Solano R, Manzanera JA, 2012. Partial Least Squares for Discriminating Variance Components in GNSS Accuracy Obtained Under Scots Pine Canopies. Forest Sci 58(2): 139-153.Valbuena R, De Blas A, Martín Fernández S, Maltamo M, Nabuurs GJ, Manzanera JA, 2013a. Within-Species Benefits of Back-projecting Laser Scanner and Multispectral Sensors in Monospecific P. sylvestris Forests. Eur J Remote Sens 46: 401-416.Valbuena R, Maltamo M, Martín-Fernández S, Packalen P, Pascual C, Nabuurs G-J, 2013b. Patterns of covariance between airborne laser scanning metrics and Lorenz curve descriptors of tree size inequality. Can J Remote Sens 39(1): 18-31.Valbuena R, Packalen P, García-Abril A, Mehtätalo L, Maltamo M, 2013c. Characterizing Forest Structural Types and Shelterwood Dynamics from Lorenz-based Indicators Predicted by Airborne Laser Scanning. Can J For Res 43: 1063-1074.Valbuena R, Maltamo M, Packalen P, 2016a. Classification of Multi-Layered Forest Development Classes from Low-Density National Airborne LiDAR Datasets. Forestry 89: 392-341.Valbuena R, Maltamo M, Packalen P, 2016b. Classification of Forest Development Stages from National Low-Density LiDAR Datasets: a Comparison of Machine Learning Methods. Revista de Teledetección 45: 15-25.Valbuena R, Hernando A, Manzanera JA, Martínez-Falero E, García-Abril A, Mola-Yudego B, 2017a. Most Similar Neighbour Imputation of Forest Attributes Using Metrics Derived from Combined Airborne LIDAR and Multispectral Sensors. Int J Digit Earth 11 (12): 1205-1218.Valbuena R, Hernando A, Manzanera JA, Görgens EB, Almeida DRA, Mauro F, García-Abril A, Coomes DA, 2017b. Enhancing of accuracy assessment for forest above-ground biomass estimates obtained from remote sensing via hypothesis testing and overfitting evaluation. Eco Mod 622: 15-26.Valbuena-Rabadán M, Santamaría-Pe-a J, Sanz-Adán F, 2016. Estimation of diameter and height of individual trees for Pinus sylvestris L. based on the individualising of crowns using airborne LiDAR and the National Forest Inventory data. For Sys 25(1): e046Varo-Martínez MA, Navarro-Cerrillo RM, Hernández-Clemente R, Duque-Lazo J, 2017. Semi-automated stand delineation in Mediterranean Pinus sylvestris plantations through segmentation of LiDAR data: The influence of pulse density. Int J Appl Earth Obs 56: 54-64.Vázquez de la Cueva A, 2008. Structural attributes of three forest types in central Spain and Landsat ETM+ information evaluated with redundancy analysis. Int J Remote Sens 29: 5657-5676.Verdú F, Salas J, 2010. Cartografía de áreas quemadas mediante análisis visual de imágenes de satélite en la Espa-a peninsular para el periodo 1991–2005. Geofocus 10: 54–81.Viana-Soto A, Aguado I, Martínez S, 2017. Assessment of post-fire vegetation recovery using fire severity and geographical data in the Mediterranean region (Spain). Environments 4: 90.Vicente-Serrano SG, Pérez-Cabello F, Lasanta T, 2011. Pinus halepensis regeneration after a wildfire in a semiarid environment: assessment using multitemporal Landsat images. Int J Wildland Fire 20Ñ 195-208.Viedma O, Quesada J, Torres I, De Santis A, Moreno JM, 2015. Fire severity in a large fire in a Pinus pinaster forest is highly predictable from burning conditions, stand structure, and topography. Ecosystems 18: 237-250.Yebra M, Chuvieco E, 2009. Generation of a species-specific look-up table for fuel moisture content assessment. IEEE J Selected topics in applied earth observation and RS 2 (1): 21-26.White JC, Wulder MA, Varhola A, Vastaranta M, Coops NC, Cook BD, Pitt D, Woods M, 2013. A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach. Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, Victoria, BC. Information Report FI-X-010, 39 pp.White JC, Wulder MA, Hobart GW, Luther JE, Hermosilla T, Griffiths P, Coops NC, Hall RJ, Hostert P, Dyk A, Guindon L, 2014. Pixel-based image compositing for large-area dense time series applications and science. Can J Remote Sens 40 (3): 192-212.White JC, Coops NC, Wulder MA, Vastaranta M, Hilker T, Tompalski P, 2016. Remote sensing technologies for enhancing forest inventories: a review. Can J Remote Sens 42: 619-641.White JC, Wulder MA, Hermosilla T, Coops NC, Hobart GW, 2017. A nationwide characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sens Environ 194: 303-321.Wulder MA, 1998. Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters. Progr Phys Geog 22 (4): 449-476.Wulder MA, Dymond CC, 2004. Remote sensing in survey of Mountain Pine impacts: review and recommendations. MPBI Report. Canadian Forest Service. Natural Resources Canada, Victoria, BC, Canada. 89 pp.Wulder MA, Masek JG, Cohen WB, Loveland TR, Woodcock CE, 2012. Opening the archive: how free data has enabled the science and monitoring promise of Landsat. Remote Sens Environ 122: 2-10.Wulder MA, Hilker T, White JC, Coops NC, Masek JG, Pflugmacher D, Crevier Y, 2015. Virtual constellations for global terrestrial monitoring. Remote Sens Environ 170: 62-76.Wulder MA, White JC, Loveland TR, Woodcock CE, Belward AS, Cohen WB, Fosnight EA, Shaw J, Masek JG, Roy DP, 2016. The global Landsat archive: Status, consolidation, and direction. Remote Sens Environ 185: 271-283.Xie Q, Zhu J, Wang Ch, Fu H, López-Sánchez JM, Ballester-Berman JD, 2017. A modified dual-baseline PolInSAR method for forest height estimation. Remote Sens-Basel 9 (8): 819.Xie Y, Sha Z, Yu M, 2008. Remote sensing imagery in vegetation mapping: a review. J Plant Ecol 1 (1): 9-23.Zald HSJ, Wulder MA, White JC, Hilker T, Hermosilla T, Hobart GW, Coops NC, 2016. Integrating Landsat pixel composites and change metrics with LiDAR plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada. Remote Sens Environ 176: 188-201.Zarco-Tejada PJ, Diaz-Varela R, Angileri V, Loudjani P, 2014. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur J Agron 55: 89-99.Zarco-Tejada PJ, Hornero A, Hernández-Clemente R, Beck PSA, 2018. Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2A imagery. ISPRS J Photogramm 137: 134-148

    Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure

    Get PDF
    Abrupt forest disturbances generating gaps \u3e0.001 km2 impact roughly 0.4–0.7 million km2a−1. Fire, windstorms, logging, and shifting cultivation are dominant disturbances; minor contributors are land conversion, flooding, landslides, and avalanches. All can have substantial impacts on canopy biomass and structure. Quantifying disturbance location, extent, severity, and the fate of disturbed biomass will improve carbon budget estimates and lead to better initialization, parameterization, and/or testing of forest carbon cycle models. Spaceborne remote sensing maps large-scale forest disturbance occurrence, location, and extent, particularly with moderate- and fine-scale resolution passive optical/near-infrared (NIR) instruments. High-resolution remote sensing (e.g., ∼1 m passive optical/NIR, or small footprint lidar) can map crown geometry and gaps, but has rarely been systematically applied to study small-scale disturbance and natural mortality gap dynamics over large regions. Reducing uncertainty in disturbance and recovery impacts on global forest carbon balance requires quantification of (1) predisturbance forest biomass; (2) disturbance impact on standing biomass and its fate; and (3) rate of biomass accumulation during recovery. Active remote sensing data (e.g., lidar, radar) are more directly indicative of canopy biomass and many structural properties than passive instrument data; a new generation of instruments designed to generate global coverage/sampling of canopy biomass and structure can improve our ability to quantify the carbon balance of Earth\u27s forests. Generating a high-quality quantitative assessment of disturbance impacts on canopy biomass and structure with spaceborne remote sensing requires comprehensive, well designed, and well coordinated field programs collecting high-quality ground-based data and linkages to dynamical models that can use this information

    LINHE Project: Development of new protocols for the integration of digital cameras and LiDAR, NIR and Hyperspectral sensors.

    Get PDF
    The LINHE project aims to develop applications for forest management based on the combined use of LiDAR data, images from spaceborne (multi and hyperspectral) and airborne sensors (panchromatic, colour, near infrared), and NIR field data from a portable sensor. The integration of the different types of data should be performed in a rapid, intuitive, cost-effective and dynamic way. In order to achieve this objective, new algorithms were developed and existing ones were tested, for the correlation of data collected in the field and those gathered by the different sensors. Specific software (LINHE prototype viewer) was developed to support data gathering and consultations, and it was tested in three different forest ecosystems, so as to validate the tool for forest management purposes. The optimisation of the synergic capabilities derived from the combined use of the different sensors will allow the enhancement of their efficiency and provide accurate information for operational forestry

    Transferability of vegetation recovery models based on remote sensing across different fire regimes

    Get PDF
    P. 441-451Aim To evaluate the transferability between fire recurrence scenarios of post‐fire vegetation cover models calibrated with satellite imagery data at different spatial resolutions within two Mediterranean pine forest sites affected by large wildfires in 2012. Location The northwest and east of the Iberian Peninsula. Methods In each study site, we defined three fire recurrence scenarios for a reference period of 35 years. We used image texture derived from the surface reflectance channels of WorldView‐2 and Sentinel‐2 (at a spatial resolution of 2 m × 2 m and 20 m × 20 m, respectively) as predictors of post‐fire vegetation cover in Random Forest regression analysies. Percentage vegetation cover was sampled in two sets of field plots with a size roughly equivalent to the spatial resolution of the imagery. The plots were distributed following a stratified design according to fire recurrence scenarios. Model transferability was assessed within each study site by applying the vegetation cover model developed for a given fire recurrence scenario to predict vegetation cover in other scenarios, iteratively. Results For both wildfires, the highest model transferability between fire recurrence scenarios was achieved for those holding the most similar vegetation community composition regarding the balance of species abundance according to their plant‐regenerative traits (root mean square error [RMSE] around or lower than 15%). Model transferability performance was highly improved by fine‐grained remote‐sensing data. Conclusions Fire recurrence is a major driver of community structure and composition so the framework proposed in this study would allow land managers to reduce efforts in the context of post‐fire decision‐making to assess vegetation recovery within large burned landscapes with fire regime variability.S

    Remote sensing techniques to assess post-fire vegetation recovery

    Get PDF
    Wildfires substantially disrupt and reshape the structure,composition and functioning of ecosystems. Monitoring post-fire recovery dynamics is crucial for evaluating resilience andsecuring the relevant information that will enhance manage-ment and support ecosystem restoration after fires. Comparedto the extensive and labour-intensive field campaigns, remotesensing provides a time- and cost-effective tool to monitorpost-fire vegetation recovery (PVR). This concise literaturereview presents tools and recent advances in remote sensingtechniques, focusing on the most commonly used sensors andindicators/metrics. It also provides recommendations on theuse of these tools for assessing vegetation recovery and onexisting gaps regarding technical limitations that could guidefuture research

    Remote Sensing and GIS Applications in Wildfires

    Get PDF
    Wildfires are closely associated with human activities and global climate change, but they also affect human health, safety, and the eco-environment. The ability of understanding wildfire dynamics is important for managing the effects of wildfires on infrastructures and natural environments. Geospatial technologies (remote sensing and GIS) provide a means to study wildfires at multiple temporal and spatial scales using an efficient and quantitative method. This chapter presents an overview of the applications of geospatial technologies in wildfire management. Applications related to pre-fire conditions management (fire hazard mapping, fire risk mapping, fuel mapping), monitoring fire conditions (fire detection, detection of hot-spots, fire thermal parameters, etc.) and post-fire condition management (burnt area mapping, burn severity, soil erosion assessments, post-fire vegetation recovery assessments and monitoring) are discussed. Emphasis is given to the roles of multispectral sensors, lidar and evolving UAV/drone technologies in mapping, processing, combining and monitoring various environmental characteristics related to wildfires. Current and previous researches are presented, and future research trends are discussed. It is wildly accepted that geospatial technologies provide a low-cost, multi-temporal means for conducting local, regional and global-scale wildfire research, and assessments
    corecore