932 research outputs found

    Explicit Estimation of Magnitude and Phase Spectra in Parallel for High-Quality Speech Enhancement

    Full text link
    Phase information has a significant impact on speech perceptual quality and intelligibility. However, existing speech enhancement methods encounter limitations in explicit phase estimation due to the non-structural nature and wrapping characteristics of the phase, leading to a bottleneck in enhanced speech quality. To overcome the above issue, in this paper, we proposed MP-SENet, a novel Speech Enhancement Network which explicitly enhances Magnitude and Phase spectra in parallel. The proposed MP-SENet adopts a codec architecture in which the encoder and decoder are bridged by time-frequency Transformers along both time and frequency dimensions. The encoder aims to encode time-frequency representations derived from the input distorted magnitude and phase spectra. The decoder comprises dual-stream magnitude and phase decoders, directly enhancing magnitude and wrapped phase spectra by incorporating a magnitude estimation architecture and a phase parallel estimation architecture, respectively. To train the MP-SENet model effectively, we define multi-level loss functions, including mean square error and perceptual metric loss of magnitude spectra, anti-wrapping loss of phase spectra, as well as mean square error and consistency loss of short-time complex spectra. Experimental results demonstrate that our proposed MP-SENet excels in high-quality speech enhancement across multiple tasks, including speech denoising, dereverberation, and bandwidth extension. Compared to existing phase-aware speech enhancement methods, it successfully avoids the bidirectional compensation effect between the magnitude and phase, leading to a better harmonic restoration. Notably, for the speech denoising task, the MP-SENet yields a state-of-the-art performance with a PESQ of 3.60 on the public VoiceBank+DEMAND dataset.Comment: Submmited to IEEE Transactions on Audio, Speech and Language Processin

    Artificial Bandwidth Extension of Speech Signals using Neural Networks

    Get PDF
    Although mobile wideband telephony has been standardized for over 15 years, many countries still do not have a nationwide network with good coverage. As a result, many cellphone calls are still downgraded to narrowband telephony. The resulting loss of quality can be reduced by artificial bandwidth extension. There has been great progress in bandwidth extension in recent years due to the use of neural networks. The topic of this thesis is the enhancement of artificial bandwidth extension using neural networks. A special focus is given to hands-free calls in a car, where the risk is high that the wideband connection is lost due to the fast movement. The bandwidth of narrowband transmission is not only reduced towards higher frequencies above 3.5 kHz but also towards lower frequencies below 300 Hz. There are already methods that estimate the low-frequency components quite well, which will therefore not be covered in this thesis. In most bandwidth extension algorithms, the narrowband signal is initially separated into a spectral envelope and an excitation signal. Both parts are then extended separately in order to finally combine both parts again. While the extension of the excitation can be implemented using simple methods without reducing the speech quality compared to wideband speech, the estimation of the spectral envelope for frequencies above 3.5 kHz is not yet solved satisfyingly. Current bandwidth extension algorithms are just able to reduce the quality loss due to narrowband transmission by a maximum of 50% in most evaluations. In this work, a modification for an existing method for excitation extension is proposed which achieves slight improvements while not generating additional computational complexity. In order to enhance the wideband envelope estimation with neural networks, two modifications of the training process are proposed. On the one hand, the loss function is extended with a discriminative part to address the different characteristics of phoneme classes. On the other hand, by using a GAN (generative adversarial network) for the training phase, a second network is added temporarily to evaluate the quality of the estimation. The neural networks that were trained are compared in subjective and objective evaluations. A final listening test addressed the scenario of a hands-free call in a car, which was simulated acoustically. The quality loss caused by the missing high frequency components could be reduced by 60% with the proposed approach.Obwohl die mobile Breitbandtelefonie bereits seit über 15 Jahren standardisiert ist, gibt es oftmals noch kein flächendeckendes Netz mit einer guten Abdeckung. Das führt dazu, dass weiterhin viele Mobilfunkgespräche auf Schmalbandtelefonie heruntergestuft werden. Der damit einhergehende Qualitätsverlust kann mit künstlicher Bandbreitenerweiterung reduziert werden. Das Thema dieser Arbeit sind Methoden zur weiteren Verbesserungen der Qualität des erweiterten Sprachsignals mithilfe neuronaler Netze. Ein besonderer Fokus liegt auf der Freisprech-Telefonie im Auto, da dabei das Risiko besonders hoch ist, dass durch die schnelle Fortbewegung die Breitbandverbindung verloren geht. Bei der Schmalbandübertragung fehlen neben den hochfrequenten Anteilen (etwa 3.5–7 kHz) auch tiefe Frequenzen unterhalb von etwa 300 Hz. Diese tieffrequenten Anteile können mit bereits vorhandenen Methoden gut geschätzt werden und sind somit nicht Teil dieser Arbeit. In vielen Algorithmen zur Bandbreitenerweiterung wird das Schmalbandsignal zu Beginn in eine spektrale Einhüllende und ein Anregungssignal aufgeteilt. Beide Anteile werden dann separat erweitert und schließlich wieder zusammengeführt. Während die Erweiterung der Anregung nahezu ohne Qualitätsverlust durch einfache Methoden umgesetzt werden kann ist die Schätzung der spektralen Einhüllenden für Frequenzen über 3.5 kHz noch nicht zufriedenstellend gelöst. Mit aktuellen Methoden können im besten Fall nur etwa 50% der durch Schmalbandübertragung reduzierten Qualität zurückgewonnen werden. Für die Anregungserweiterung wird in dieser Arbeit eine Variation vorgestellt, die leichte Verbesserungen erzielt ohne dabei einen Mehraufwand in der Berechnung zu erzeugen. Für die Schätzung der Einhüllenden des Breitbandsignals mithilfe neuronaler Netze werden zwei Änderungen am Trainingsprozess vorgeschlagen. Einerseits wird die Kostenfunktion um einen diskriminativen Anteil erweitert, der das Netz besser zwischen verschiedenen Phonemen unterscheiden lässt. Andererseits wird als Architektur ein GAN (Generative adversarial network) verwendet, wofür in der Trainingsphase ein zweites Netz verwendet wird, das die Qualität der Schätzung bewertet. Die trainierten neuronale Netze wurden in subjektiven und objektiven Tests verglichen. Ein abschließender Hörtest diente zur Evaluierung des Freisprechens im Auto, welches akustisch simuliert wurde. Der Qualitätsverlust durch Wegfallen der hohen Frequenzanteile konnte dabei mit dem vorgeschlagenen Ansatz um etwa 60% reduziert werden

    Configurable EBEN: Extreme Bandwidth Extension Network to enhance body-conducted speech capture

    Full text link
    This paper presents a configurable version of Extreme Bandwidth Extension Network (EBEN), a Generative Adversarial Network (GAN) designed to improve audio captured with body-conduction microphones. We show that although these microphones significantly reduce environmental noise, this insensitivity to ambient noise happens at the expense of the bandwidth of the speech signal acquired by the wearer of the devices. The obtained captured signals therefore require the use of signal enhancement techniques to recover the full-bandwidth speech. EBEN leverages a configurable multiband decomposition of the raw captured signal. This decomposition allows the data time domain dimensions to be reduced and the full band signal to be better controlled. The multiband representation of the captured signal is processed through a U-Net-like model, which combines feature and adversarial losses to generate an enhanced speech signal. We also benefit from this original representation in the proposed configurable discriminators architecture. The configurable EBEN approach can achieve state-of-the-art enhancement results on synthetic data with a lightweight generator that allows real-time processing.Comment: Accepted in IEEE/ACM Transactions on Audio, Speech and Language Processing on 14/08/202

    Objective and Subjective Evaluation of Wideband Speech Quality

    Get PDF
    Traditional landline and cellular communications use a bandwidth of 300 - 3400 Hz for transmitting speech. This narrow bandwidth impacts quality, intelligibility and naturalness of transmitted speech. There is an impending change within the telecommunication industry towards using wider bandwidth speech, but the enlarged bandwidth also introduces a few challenges in speech processing. Echo and noise are two challenging issues in wideband telephony, due to increased perceptual sensitivity by users. Subjective and/or objective measurements of speech quality are important in benchmarking speech processing algorithms and evaluating the effect of parameters like noise, echo, and delay in wideband telephony. Subjective measures include ratings of speech quality by listeners, whereas objective measures compute a metric based on the reference and degraded speech samples. While subjective quality ratings are the gold - standard\u27\u27, they are also time- and resource- consuming. An objective metric that correlates highly with subjective data is attractive, as it can act as a substitute for subjective quality scores in gauging the performance of different algorithms and devices. This thesis reports results from a series of experiments on subjective and objective speech quality evaluation for wideband telephony applications. First, a custom wideband noise reduction database was created that contained speech samples corrupted by different background noises at different signal to noise ratios (SNRs) and processed by six different noise reduction algorithms. Comprehensive subjective evaluation of this database revealed an interaction between the algorithm performance, noise type and SNR. Several auditory-based objective metrics such as the Loudness Pattern Distortion (LPD) measure based on the Moore - Glasberg auditory model were evaluated in predicting the subjective scores. In addition, the performance of Bayesian Multivariate Regression Splines(BMLS) was also evaluated in terms of mapping the scores calculated by the objective metrics to the true quality scores. The combination of LPD and BMLS resulted in high correlation with the subjective scores and was used as a substitution for fine - tuning the noise reduction algorithms. Second, the effect of echo and delay on the wideband speech was evaluated in both listening and conversational context, through both subjective and objective measures. A database containing speech samples corrupted by echo with different delay and frequency response characteristics was created, and was later used to collect subjective quality ratings. The LPD - BMLS objective metric was then validated using the subjective scores. Third, to evaluate the effect of echo and delay in conversational context, a realtime simulator was developed. Pairs of subjects conversed over the simulated system and rated the quality of their conversations which were degraded by different amount of echo and delay. The quality scores were analysed and LPD+BMLS combination was found to be effective in predicting subjective impressions of quality for condition-averaged data

    Telephone speech enhancement for the hearing impaired

    Get PDF
    This thesis report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2009.Cataloged from PDF version of thesis report.Includes bibliographical references (page 48).Bony TasnimC. Z. MurshedB. Computer Science and Engineerin
    corecore