9,116 research outputs found

    Enhancing the EAST-ADL error model with HiP-HOPS semantics

    Get PDF
    EAST-ADL is a domain-specific modelling language for the engineering of automotive embedded systems. The language has abstractions that enable engineers to capture a variety of information about design in the course of the lifecycle — from requirements to detailed design of hardware and software architectures. The specification of the EAST-ADL language includes an error model extension which documents language structures that allow potential failures of design elements to be specified locally. The effects of these failures are then later assessed in the context of the architecture design. To provide this type of useful assessment, a language and a specification are not enough; a compiler-like tool that can read and operate on a system specification together with its error model is needed. In this paper we integrate the error model of EAST-ADL with the precise semantics of HiP-HOPS — a state-of-the-art tool that enables dependability analysis and optimization of design models. We present the integration concept between EAST-ADL structure and HiP-HOPS error propagation logic and its transformation into the HiP-HOPS model. Source and destination models are represented using the corresponding XML formats. The connection of these two models at tool level enables practical EAST-ADL designs of embedded automotive systems to be analysed in terms of dependability, i.e. safety, reliability and availability. In addition, the information encoded in the error model can be re-used across different contexts of application with the associated benefits for cost reduction, simplification, and rationalisation of dependability assessments in complex engineering designs

    A Process Algebra Software Engineering Environment

    Full text link
    In previous work we described how the process algebra based language PSF can be used in software engineering, using the ToolBus, a coordination architecture also based on process algebra, as implementation model. In this article we summarize that work and describe the software development process more formally by presenting the tools we use in this process in a CASE setting, leading to the PSF-ToolBus software engineering environment. We generalize the refine step in this environment towards a process algebra based software engineering workbench of which several instances can be combined to form an environment

    Towards a Tool-based Development Methodology for Pervasive Computing Applications

    Get PDF
    Despite much progress, developing a pervasive computing application remains a challenge because of a lack of conceptual frameworks and supporting tools. This challenge involves coping with heterogeneous devices, overcoming the intricacies of distributed systems technologies, working out an architecture for the application, encoding it in a program, writing specific code to test the application, and finally deploying it. This paper presents a design language and a tool suite covering the development life-cycle of a pervasive computing application. The design language allows to define a taxonomy of area-specific building-blocks, abstracting over their heterogeneity. This language also includes a layer to define the architecture of an application, following an architectural pattern commonly used in the pervasive computing domain. Our underlying methodology assigns roles to the stakeholders, providing separation of concerns. Our tool suite includes a compiler that takes design artifacts written in our language as input and generates a programming framework that supports the subsequent development stages, namely implementation, testing, and deployment. Our methodology has been applied on a wide spectrum of areas. Based on these experiments, we assess our approach through three criteria: expressiveness, usability, and productivity

    Software (Re-)Engineering with PSF II: from architecture to implementation

    Full text link
    This paper presents ongoing research on the application of PSF in the field of software engineering and reengineering. We build a new implementation for the simulator of the PSF Toolkit starting from the specification in PSF of the architecture of a simple simulator and extend it with features to obtain the architecture of a full simulator. We apply refining and constraining techniques on the specification of the architecture to obtain a specification low enough to build an implementation from

    A synthesis of logic and bio-inspired techniques in the design of dependable systems

    Get PDF
    Much of the development of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, can be attributed to the application of advances in formal logic and its application to fault forecasting and verification of systems. In parallel, work on bio-inspired technologies has shown potential for the evolutionary design of engineering systems via automated exploration of potentially large design spaces. We have not yet seen the emergence of a design paradigm that effectively combines these two techniques, schematically founded on the two pillars of formal logic and biology, from the early stages of, and throughout, the design lifecycle. Such a design paradigm would apply these techniques synergistically and systematically to enable optimal refinement of new designs which can be driven effectively by dependability requirements. The paper sketches such a model-centric paradigm for the design of dependable systems, presented in the scope of the HiP-HOPS tool and technique, that brings these technologies together to realise their combined potential benefits. The paper begins by identifying current challenges in model-based safety assessment and then overviews the use of meta-heuristics at various stages of the design lifecycle covering topics that span from allocation of dependability requirements, through dependability analysis, to multi-objective optimisation of system architectures and maintenance schedules

    A New Approach for Quality Management in Pervasive Computing Environments

    Full text link
    This paper provides an extension of MDA called Context-aware Quality Model Driven Architecture (CQ-MDA) which can be used for quality control in pervasive computing environments. The proposed CQ-MDA approach based on ContextualArchRQMM (Contextual ARCHitecture Quality Requirement MetaModel), being an extension to the MDA, allows for considering quality and resources-awareness while conducting the design process. The contributions of this paper are a meta-model for architecture quality control of context-aware applications and a model driven approach to separate architecture concerns from context and quality concerns and to configure reconfigurable software architectures of distributed systems. To demonstrate the utility of our approach, we use a videoconference system.Comment: 10 pages, 10 Figures, Oral Presentation in ECSA 201
    • …
    corecore