2,770 research outputs found

    Mapping Tissue Optical Attenuation to Identify Cancer Using Optical Coherence Tomography

    Full text link
    The lymphatic system is a common route for the spread of cancer and the identification of lymph node metastases is a key task during cancer surgery. This paper demonstrates the use of optical coherence tomography to construct parametric images of lymph nodes. It describes a method to automatically estimate the optical attenuation coefficient of tissue. By mapping the optical attenuation coefficient at each location in the scan, it is possible to construct a parametric image indicating variations in tissue type. The algorithm is applied to ex vivo samples of human axillary lymph nodes and validated against a histological gold standard. Results are shown illustrating the variation in optical properties between cancerous and healthy tissue

    The angular spectrum of the scattering coefficient map reveals subsurface colorectal cancer

    Get PDF
    Abstract Colorectal cancer diagnosis currently relies on histological detection of endoluminal neoplasia in biopsy specimens. However, clinical visual endoscopy provides no quantitative subsurface cancer information. In this ex vivo study of nine fresh human colon specimens, we report the first use of quantified subsurface scattering coefficient maps acquired by swept-source optical coherence tomography to reveal subsurface abnormities. We generate subsurface scattering coefficient maps with a novel wavelet-based-curve-fitting method that provides significantly improved accuracy. The angular spectra of scattering coefficient maps of normal tissues exhibit a spatial feature distinct from those of abnormal tissues. An angular spectrum index to quantify the differences between the normal and abnormal tissues is derived, and its strength in revealing subsurface cancer in ex vivo samples is statistically analyzed. The study demonstrates that the angular spectrum of the scattering coefficient map can effectively reveal subsurface colorectal cancer and potentially provide a fast and more accurate diagnosis

    Parametric imaging of the local attenuation coefficient in human axillary lymph nodes assessed using optical coherence tomography

    Get PDF
    We report the use of optical coherence tomography (OCT) to determine spatially localized optical attenuation coefficients of human axillary lymph nodes and their use to generate parametric images of lymphoid tissue. 3D-OCT images were obtained from excised lymph nodes and optical attenuation coefficients were extracted assuming a single scattering model of OCT. We present the measured attenuation coefficients for several tissue regions in benign and reactive lymph nodes, as identified by histopathology. We show parametric images of the measured attenuation coefficients as well as segmented images of tissue type based on thresholding of the attenuation coefficient values. Comparison to histology demonstrates the enhancement of contrast in parametric images relative to OCT images. This enhancement is a step towards the use of OCT for in situ assessment of lymph nodes

    Objective localisation of oral mucosal lesions using optical coherence tomography.

    Get PDF
    PhDIdentification of the most representative location for biopsy is critical in establishing the definitive diagnosis of oral mucosal lesions. Currently, this process involves visual evaluation of the colour characteristics of tissue aided by topical application of contrast enhancing agents. Although, this approach is widely practiced, it remains limited by its lack of objectivity in identifying and delineating suspicious areas for biopsy. To overcome this drawback there is a need to introduce a technique that would provide macroscopic guidance based on microscopic imaging and analysis. Optical Coherence Tomography is an emerging high resolution biomedical imaging modality that can potentially be used as an in vivo tool for selection of the most appropriate site for biopsy. This thesis investigates the use of OCT for qualitative and quantitative mapping of oral mucosal lesions. Feasibility studies were performed on patient biopsy samples prior to histopathological processing using a commercial OCT microscope. Qualitative imaging results examining a variety of normal, benign, inflammatory and premalignant lesions of the oral mucosa will be presented. Furthermore, the identification and utilisation of a common quantifiable parameter in OCT and histology of images of normal and dysplastic oral epithelium will be explored thus ensuring objective and reproducible mapping of the progression of oral carcinogenesis. Finally, the selection of the most representative biopsy site of oral epithelial dysplasia would be investigated using a novel approach, scattering attenuation microscopy. It is hoped this approach may help convey more clinical meaning than the conventional visualisation of OCT images

    The Advanced Applications For Optical Coherence Tomography In Skin Imaging

    Get PDF
    Optical coherence tomography (OCT), based on the principle of interferometry, is a fast and non-invasive imaging modality, which has been approved by FDA for dermatologic applications. OCT has high spatial resolution up to micrometer scale compared to traditional ultrasound imaging. In addition, OCT can provide real-time cross-sectional images with 1 to 2 mm penetration depth, which makes it an ideal imaging technique to assess the skin micro-morphology and pathology without any tissue removal. Many studies have investigated the possibilities of using OCT to evaluate dermatologic conditions, such as skin cancer, dermatitis, psoriasis, and skin damages. Hence, OCT has tremendous potential to provide skin histological and pathological information and assist differential diagnosis of various skin diseases. In this study, we used a swept-source OCT with 1305 nm central wavelength to explore its advanced applications in dermatology. This dissertation consists of four major research projects. First, we explored the feasibility of OCT imaging for assisting real-time visualization in skin biopsy. We showed that OCT could be used to guide and track a needle insertion in mouse skin in real-time. The structure of skin and the movement of needle can be clearly seen on the OCT images without any time delay during the procedures. Next, we tested the concept of performing the punch biopsy using OCT hand-held probe attached to a piercing tip in a phantom. We proved that using the OCT is a reliable technique to delineate the margin of lesion in phantom. And it is possible to perform the punch biopsy with the OCT probe. Second, we tested the performance of contrast-enhanced OCT in melanoma detection in an in vitro study. Melanoma is the most lethal type of skin cancer. Early detection could significantly improve the long-term survival rate of patients. In this initial study, a contrast agent (Gal3-USGNPs) is developed by conjugating melanoma biomarker (Gal3) to ultra-small gold nanoparticles (USGNPs). We showed that the contrast agent can differentiate B16 melanoma cells from normal skin keratinocytes in vitro. To avoid systemic administration of USGNPs, the third project continues to explore the enhanced topical delivery of USGNPs. In this study, we used OCT to monitor the topical delivery of nanoparticles on pig skin over time. And the diffusion and penetration of USGNPs in skin can be improved by applying chemical and physical enhancers such as DMSO and sonophoresis. Finally, in addition to image the cross-sectional structure of skin, we also aim to extract quantitative information from OCT images. The skin optical properties such as attenuation coefficient can be measured from OCT images. We measured and compared the skin attenuation coefficient in the skin of forehead and lateral hip, the skin of three different age groups, and the skin of three different Fitzpatrick types. The statistical analysis showed that epidermis has much higher attenuation coefficient than dermis. And the skin type V & VI have a relatively lower attenuation coefficient than the other skin types. These studies could aid the detection of skin cancer using imaging techniques and provide some new insights into the future applications of OCT in dermatology

    Molecular Contrast Optical Coherence Tomography: A Review

    Get PDF
    This article reviews the current state of research on the use of molecular contrast agents in optical coherence tomography (OCT) imaging techniques. After a brief discussion of the basic principle of OCT and the importance of incorporating molecular contrast agent usage into this imaging modality, we shall present an overview of the different molecular contrast OCT (MCOCT) methods that have been developed thus far. We will then discuss several important practical issues that define the possible range of contrast agent choice, the design criteria for engineered molecular contrast agent and the implementability of a given MCOCT method for clinical or biological applications. We will conclude by outlining a few areas of pursuit that deserve a greater degree of research and development

    Optical Coherence Tomography as a Diagnostic Tool in Renal Transplant and Cancer Imaging

    Get PDF
    This dissertation aims to investigate optical coherence tomography (OCT) as a diagnostic technology in renal imaging through two main arenas: renal transplantation and renal cancer. Part 1: Ischemia-reperfusion injury, which frequently occurs after kidney transplant, is a major contributing factor in delayed-graft function leading to varying degrees of early renal dysfunction. Real-time assessment of graft morphological and hemodynamic changes could help to evaluate graft condition and offer valuable information to predict the prognosis of graft injury for patient-specific management strategies. Previous studies have shown the ability of OCT to monitor structural changes associated with ischemia-reperfusion injury in vivo. Therefore, we investigated the ability of Doppler OCT (DOCT) to image microcirculatory changes in real time in the kidney glomerulus in vivo in an animal model and quantified observed changes in blood flow in 3D. Then, we translated OCT/DOCT technology into clinical testing for renal imaging during transplantation procedures and demonstrated the ability of OCT/DOCT to reveal renal tubular morphology and blood flow immediately following reperfusion. Part 2: For solid renal masses, nephron sparing procedures have been developed as an alternative to radical nephrectomy. However, achieving a negative tumor margin is critical to ensuring the best oncological efficacy for precluding tumor recurrence. OCT is a high-resolution, real-time imaging technology that has shown the ability to distinguish cancerous tissue from normal in several systems of the body based on changes in tissue optical properties. Therefore, we investigated the capability of OCT to quantify differences in optical properties between tumor and normal renal tissue. However, we did not observe a significant difference in optical attenuation between tumor and normal tissue in ex vivo specimens. These results suggest that further studies or possible alternative metrics need to be investigated to determine if OCT is able to detect renal neoplasms

    Optical coherence tomography—current technology and applications in clinical and biomedical research

    Get PDF
    corecore