42 research outputs found

    Secondary lahar hazard assessment for Villa la Angostura, Argentina, using Two-Phase-Titan modelling code during 2011 CordĂłn Caulle eruption

    Get PDF
    This paper shows the results of secondary lahar modelling in Villa La Angostura town (Neuquén-Argentina) based on the Two-Phase-Titan modelling computer code, which aimed to provide decision makers a useful tool to assess lahar hazard during the 2011 Puyehue-Cordón Caulle Volcanic Complex eruption. Possible occurrence of secondary lahars that could reach the city was analized. The performance of the Two-Phase-Titan model using 15 m resolution DEMs developed from optical satellite images and from radar satellite images was evaluated. The output of these modellings showed inconsis- tencies that, based on field observations, were attributed to bad adjustment of DEMs to real topography. Further testing of results using more accurate radar based 10 m DEM, proved more realistic predictions. The procedure allowed to simulate the path of flows from Florencia, Las Piedritas and Colorado creeks, which are the most influenc- ing streams in Villa La Angostura. The output of the modelling is a valuable tool for city planning and risk management especially considering the glacial geomorphology features of the region, the strong urban development growth and the land occupation tendencies observed in last decade in Villa La Angostura and its surroundings

    Application of Geographical Information Systems to Lahar Hazard Assessment on an Active Volcanic System

    Get PDF
    Lahars (highly dynamic mixtures of volcanic debris and water) have been responsible for some of the most serious volcanic disasters and have killed tens of thousands of people in recent decades. Despite considerable lahar model development in the sciences, many research tools have proved wholly unsuitable for practical application on an active volcanic system where it is difficult to obtain field measurements. In addition, geographic information systems are tools that offer a great potential to explore, model and map hazards, but are currently under-utilised for lahar hazard assessment. This research pioneered a three-tiered approach to lahar hazard assessment on Montserrat, West Indies. Initially, requirements of potential users of lahar information (scientists and decision-makers) were established through interview and evaluated against attainable modelling outputs (given flow type and data availability). Subsequently, a digital elevation model, fit for modelling lahars, was used by a path of steepest descent algorithm and a semi-empirical debris-flow model in the prediction of lahar routes and inundation areas. Limitations of these established geographical information system (GIS) based models, for predicting the behaviour of (relatively under-studied) dilute lahars, were used to inform key parameters for a novel model, also tightly coupled to a GIS, that simulated flow routes based on change in velocity. Importantly, uncertainty in model predictions was assessed through a stochastic simulation of elevation error. Finally, the practical utility of modelling outputs (visualisations) was assessed through mutual feedback with local scientists. The new model adequately replicated past flow routes and gave preliminary predictions for velocities and travel times, thus providing a short-term lahar hazard assessment. Inundation areas were also mapped using the debris-flow model to assist long-term planning. Ultimately, a GIS can support ‘on the ground’ planning decisions, but efficacy is limited by an active volcanic system which can restrict feedback to and from end-users. *[The appendices for this thesis were submitted as separate files which could not be uploaded to the repository. Please contact the author for more information.]

    Recreating the 2005 lahar flow in Panabaj, Guatemala as a basis for assessing methods of merging DEMs of differing resolutions.

    Get PDF
    With the development of new technologies and methods for collecting elevation data, high resolution DEMs are becoming increasingly available, though limitations can often leave datasets incomplete. This project set out to assess methods for merging together multiple DEMs with varying resolutions for use in overland flow modelling. The study area for this project is Panabaj, Guatemala which saw significant loss of life and property as a result of a lahar flow in October 2005. In the years since, the population has begun to rebound, leading to an increased number of people at risk of a similar event. The first stage of this project was to recreate the 2005 lahar using the LaharFlow software using a complete 10m DEM, informed by on-site measurements and observations made soon after the lahar event. Following this, a number of DEMs would be produced using various merging techniques, combining 10m AW3D data with 30m SRTM data, across two scenarios where the high resolution data was used in either the Western or Eastern half of the flow area. By running the same LaharFlow parameters over these merged DEMs, and comparing results from models running on complete and merged DEMs, the effects of the merging techniques on overland flow simulations were be assessed. The results showed that the three DEM merging methods yielded similar results, however models where high resolution data was used in the Western half (containing the inundation area and flow terminus) yielded consistently better results, indicating that the accuracy of topographic data is plays a greater role in shallower areas where the flow is slower. In order to facilitate engagement with the local and external stakeholders with varying experience in using spatial data, Blender was used to attempt to produce more accessible model outputs, taking lessons learned from participatory mapping exercises in Guatemala

    Detailed mapping of lava and ash deposits at Indonesian volcanoes by means of VHR PlanetScope change detection

    Get PDF
    Mapping of lava flows in unvegetated areas of active volcanoes using optical satellite data is challenging due to spectral similarities of volcanic deposits and the surrounding background. Using very high-resolution PlanetScope data, this study introduces a novel object-oriented classification approach for mapping lava flows in both vegetated and unvegetated areas during several eruptive phases of three Indonesian volcanoes (Karangetang 2018/2019, Agung 2017, Krakatau 2018/2019). For this, change detection analysis based on PlanetScope imagery for mapping loss of vegetation due to volcanic activity (e.g., lava flows) is combined with the analysis of changes in texture and brightness, with hydrological runoff modelling and with analysis of thermal anomalies derived from Sentinel-2 or Landsat-8. Qualitative comparison of the mapped lava flows showed good agreement with multispectral false color time series (Sentinel-2 and Landsat-8). Reports of the Global Volcanism Program support the findings, indicating the developed lava mapping approach produces valuable results for monitoring volcanic hazards. Despite the lack of bands in infrared wavelengths, PlanetScope proves beneficial for the assessment of risk and near-real-time monitoring of active volcanoes due to its high spatial (3 m) and temporal resolution (mapping of all subaerial volcanoes on a daily basis)

    Volcanic Processes Monitoring and Hazard Assessment Using Integration of Remote Sensing and Ground-Based Techniques

    Get PDF
    The monitoring of active volcanoes is a complex task based on multidisciplinary and integrated analyses that use ground, drones and satellite monitoring devices. Over time, and with the development of new technologies and increasing frequency of acquisition, the use of remote sensing to accomplish this important task has grown enormously. This is especially so with the use of drones and satellites for classifying eruptive events and detecting the opening of new vents, the spreading of lava flows on the surface or ash plumes in the atmosphere, the fallout of tephra on the ground, the intrusion of new magma within the volcano edifice, and the deformation preceding impending eruptions, and many other factors. The main challenge in using remote sensing techniques is to develop automated and reliable systems that may assist the decision maker in volcano monitoring, hazard assessment and risk reduction. The integration with ground-based techniques represents a valuable additional aspect that makes the proposed methods more robust and reinforces the results obtained. This collection of papers is focused on several active volcanoes, such as Stromboli, Etna, and Volcano in Italy; the Long Valley caldera and Kilauea volcano in the USA; and Cotopaxi in Ecuador

    Volcanic Activity: Processing of Observation and Remote Sensing Data (VAPOR)

    Get PDF
    The World Bank makes a very clear distinction between disasters and natural phenomena. Natural phenomena are events like volcanic eruptions. A disaster only occurs when the ability of the community to cope with natural phenomenon has been surpassed, causing widespread human, material, economic or environmental losses. By these definitions, volcanic eruptions do not have to lead to disasters. On November 13, 1985, the second most deadly eruption of the twentieth century occurred in Colombia. Within a few hours of the eruption of the Nevado del Ruiz volcano, 23,000 people were dead because no infrastructure existed to respond to such an emergency. Six years later, the 1991 eruption of Mount Pinatubo in the Philippines was the largest volcanic eruption in the 21st century to affect a heavily populated area. Because the volcano was monitored, early warning of the eruption was provided and thousands of lives were saved. Despite these improvements, some communities still face danger from volcanic events and volcano-monitoring systems still require further development. There remain clear gaps in monitoring technologies, in data sharing, and in early warning and hazard tracking systems. A global volcano-monitoring framework such as the VIDA framework can contribute to filling these gaps. VIDA stands for “VAPOR Integrated Data-sharing and Analysis” and is also the Catalan and Spanish word for ‘life’. The ultimate goal for this project is to help save the lives of people threatened by volcanic hazards, while protecting infrastructure and contributing to decision support mechanisms in disaster risk management scenarios

    Elements at risk

    Get PDF

    Applications of Satellite Earth Observations section - NEODAAS: Providing satellite data for efficient research

    Get PDF
    The NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS) provides a central point of Earth Observation (EO) satellite data access and expertise for UK researchers. The service is tailored to individual users’ requirements to ensure that researchers can focus effort on their science, rather than struggling with correct use of unfamiliar satellite data
    corecore