6,204 research outputs found

    A generic persistence model for CLP systems (and two useful implementations)

    Get PDF
    This paper describes a model of persistence in (C)LP languages and two different and practically very useful ways to implement this model in current systems. The fundamental idea is that persistence is a characteristic of certain dynamic predicates (Le., those which encapsulate state). The main effect of declaring a predicate persistent is that the dynamic changes made to such predicates persist from one execution to the next one. After proposing a syntax for declaring persistent predicates, a simple, file-based implementation of the concept is presented and some examples shown. An additional implementation is presented which stores persistent predicates in an external datábase. The abstraction of the concept of persistence from its implementation allows developing applications which can store their persistent predicates alternatively in files or databases with only a few simple changes to a declaration stating the location and modality used for persistent storage. The paper presents the model, the implementation approach in both the cases of using files and relational databases, a number of optimizations of the process (using information obtained from static global analysis and goal clustering), and performance results from an implementation of these ideas

    Improving treebank-based automatic LFG induction for Spanish

    Get PDF
    We describe several improvements to the method of treebank-based LFG induction for Spanish from the Cast3LB treebank (O’Donovan et al., 2005). We discuss the different categories of problems encountered and present the solutions adopted. Some of the problems involve a simple adoption of existing linguistic analyses, as in our treatment of clitic doubling and null subjects. In other cases there is no standard LFG account for the phenomenon we wish to model and we adopt a compromise, conservative solution. This is exemplified by our treatment of Spanish periphrastic constructions. In yet another case, the less configurational nature of Spanish means that the LFG annotation algorithm has to rely mostly on Cast3LB function tags, and consequently a reliable method of adding those tags to parse trees had to be developed. This method achieves over 6% improvement over the baseline for the Cast3LB-function-tag assignment task, and over 3% improvement over the baseline for LFG f-structure construction from function-tag-enriched trees

    Automatic Verification of Transactions on an Object-Oriented Database

    Get PDF
    In the context of the object-oriented data model, a compiletime approach is given that provides for a significant reduction of the amount of run-time transaction overhead due to integrity constraint checking. The higher-order logic Isabelle theorem prover is used to automatically prove which constraints might, or might not be violated by a given transaction in a manner analogous to the one used by Sheard and Stemple (1989) for the relational data model. A prototype transaction verification tool has been implemented, which automates the semantic mappings and generates proof goals for Isabelle. Test results are discussed to illustrate the effectiveness of our approach

    Compensation methods to support cooperative applications: A case study in automated verification of schema requirements for an advanced transaction model

    Get PDF
    Compensation plays an important role in advanced transaction models, cooperative work and workflow systems. A schema designer is typically required to supply for each transaction another transaction to semantically undo the effects of . Little attention has been paid to the verification of the desirable properties of such operations, however. This paper demonstrates the use of a higher-order logic theorem prover for verifying that compensating transactions return a database to its original state. It is shown how an OODB schema is translated to the language of the theorem prover so that proofs can be performed on the compensating transactions
    corecore