23 research outputs found

    Optimization of Circuits for IBM's five-qubit Quantum Computers

    Full text link
    IBM has made several quantum computers available to researchers around the world via cloud services. Two architectures with five qubits, one with 16, and one with 20 qubits are available to run experiments. The IBM architectures implement gates from the Clifford+T gate library. However, each architecture only implements a subset of the possible CNOT gates. In this paper, we show how Clifford+T circuits can efficiently be mapped into the two IBM quantum computers with 5 qubits. We further present an algorithm and a set of circuit identities that may be used to optimize the Clifford+T circuits in terms of gate count and number of levels. It is further shown that the optimized circuits can considerably reduce the gate count and number of levels and thus produce results with better fidelity

    Design of Quantum Circuits for Galois Field Squaring and Exponentiation

    Full text link
    This work presents an algorithm to generate depth, quantum gate and qubit optimized circuits for GF(2m)GF(2^m) squaring in the polynomial basis. Further, to the best of our knowledge the proposed quantum squaring circuit algorithm is the only work that considers depth as a metric to be optimized. We compared circuits generated by our proposed algorithm against the state of the art and determine that they require 50%50 \% fewer qubits and offer gates savings that range from 37%37 \% to 68%68 \%. Further, existing quantum exponentiation are based on either modular or integer arithmetic. However, Galois arithmetic is a useful tool to design resource efficient quantum exponentiation circuit applicable in quantum cryptanalysis. Therefore, we present the quantum circuit implementation of Galois field exponentiation based on the proposed quantum Galois field squaring circuit. We calculated a qubit savings ranging between 44%44\% to 50%50\% and quantum gate savings ranging between 37%37 \% to 68%68 \% compared to identical quantum exponentiation circuit based on existing squaring circuits.Comment: To appear in conference proceedings of the 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI 2017

    Synthesis and Optimization of Reversible Circuits - A Survey

    Full text link
    Reversible logic circuits have been historically motivated by theoretical research in low-power electronics as well as practical improvement of bit-manipulation transforms in cryptography and computer graphics. Recently, reversible circuits have attracted interest as components of quantum algorithms, as well as in photonic and nano-computing technologies where some switching devices offer no signal gain. Research in generating reversible logic distinguishes between circuit synthesis, post-synthesis optimization, and technology mapping. In this survey, we review algorithmic paradigms --- search-based, cycle-based, transformation-based, and BDD-based --- as well as specific algorithms for reversible synthesis, both exact and heuristic. We conclude the survey by outlining key open challenges in synthesis of reversible and quantum logic, as well as most common misconceptions.Comment: 34 pages, 15 figures, 2 table

    A Best-Fit Mapping Algorithm to Facilitate ESOP-Decomposition in Clifford+T Quantum Network Synthesis

    Get PDF
    Currently, there is a large research interest and a significant economical effort to build the first practical quantum computer. Such quantum computers promise to exceed the capabilities of conventional computers in fields such as computational chemistry, machine learning and cryptanalysis. Automated methods to map logic designs to quantum networks are crucial to fully realizing this dream, however, existing methods can be expensive both in computational time as well as in the size of the resultant quantum networks. This work introduces an efficient method to map reversible single-target gates into a universal set of quantum gates (Clifford+T). This mapping method is called best-fit mapping and aims at reducing the cost of the resulting quantum network. It exploits k-LUT mapping and the existence of clean ancilla qubits to decompose a large single-target gate into a set of smaller single-target gates. In addition this work proposes a post-synthesis optimization method to reduce the cost of the final quantum network, based on two cost-minimization properties. Results show a cost reduction for the synthesized EPFL benchmark up to 53% in the number T gates

    T-COUNT OPTIMIZATION OF QUANTUM CARRY LOOK-AHEAD ADDER

    Get PDF
    With the emergence of quantum physics and computer science in the 20th century, a new era was born which can solve very difficult problems in a much faster rate or problems that classical computing just can\u27t solve. In the 21st century, quantum computing needs to be used to solve tough problems in engineering, business, medical, and other fields that required results not today but yesterday. To make this dream come true, engineers in the semiconductor industry need to make the quantum circuits a reality. To realize quantum circuits and make them scalable, they need to be fault tolerant, therefore Clifford+T gates need to be implemented into those circuits. But the main issue is that in the Clifford+T gate set, T gates are expensive to implement. Carry Look-Ahead addition circuits have caught the interest of researchers because the number of gate layers encountered by a given qubit in the circuit (or the circuit\u27s depth) is logarithmic in terms of the input size n. Therefore, this thesis focuses on optimizing previous designs of out-of-place and in-place Carry Look-Ahead Adders to decrease the T-count, sum of all T and T Hermitian transpose gates in a quantum circuit
    corecore