153 research outputs found

    Machine vision detection of pests, diseases, and weeds: A review

    Get PDF
    Most of mankind’s living and workspace have been or going to be blended with smart technologies like the Internet of Things. The industrial domain has embraced automation technology, but agriculture automation is still in its infancy since the espousal has high investment costs and little commercialization of innovative technologies due to reliability issues. Machine vision is a potential technique for surveillance of crop health which can pinpoint the geolocation of crop stress in the field. Early statistics on crop health can hasten prevention strategies such as pesticide, fungicide applications to reduce the pollution impact on water, soil, and air ecosystems. This paper condenses the proposed machine vision relate research literature in agriculture to date to explore various pests, diseases, and weeds detection mechanisms

    Remote sensing of biotic stress in crop plants and its applications for pest management

    Get PDF
    Not AvailableRemote sensing (RS) of biotic stress is based on the assumption that stress interferes with photosynthesis and physical structure of the plant at tissue and canopy level, and thus affects the absorption of light energy and alters the refl ectance spectrum. Research into vegetative spectral refl ectance can help us gain a better understanding of the physical, physiological and chemical processes in plants due to pest and disease attack and to detect the resulting biotic stress. This has important implications to effective pest management. This review provides an overview of detection of various biotic stresses in different crops using various RS platforms. Previous work pertaining to the use of RS technique for assessing pest and disease severity using different RS techniques is briefl y summerized. The available sources of ground based, airborne and satellite sensors are presented along with various narrow band vegetation indices that could be used for characterizing biotic stress. Using relevant examples, the merits and demerits of various RS sensors and platforms for detection of pests and diseases are discussed. Pest surveillance programs such as fi eld scoutings are often expensive, time consuming, laborious and prone to error. As remote sensing gives a synoptic view of the area in a non-destructive and noninvasive way, this technology could be effective and provide timely information on spatial variability of pest damage over a large area. Thus remote sensing can guide scouting efforts and crop protection advisory in a more precise and effective manner. With the recent advancements in the communication, aviation and space technology, there is a lot of potential for application of remote sensing technology in the fi eld of pest management.Not Availabl

    Automated early plant disease detection and grading system: Development and implementation

    Get PDF
    As the agriculture industry grows, many attempts have been made to ensure high quality of produce. Diseases and defects found in plants and crops, affect the agriculture industry greatly. Hence, many techniques and technologies have been developed to help solving or reducing the impact of plant diseases. Imagining analysis tools, and gas sensors are becoming more frequently integrated into smart systems for plant disease detection. Many disease detection systems incorporate imaging analysis tools and Volatile Organic Compound (VOC) profiling techniques to detect early symptoms of diseases and defects of plants, fruits and vegetative produce. These disease detection techniques can be further categorized into two main groups; preharvest disease detection and postharvest disease detection techniques. This thesis aims to introduce the available disease detection techniques and to compare it with the latest innovative smart systems that feature visible imaging, hyperspectral imaging, and VOC profiling. In addition, this thesis incorporates the use of image analysis tools and k-means segmentation to implement a preharvest Offline and Online disease detection system. The Offline system to be used by pathologists and agriculturists to measure plant leaf disease severity levels. K-means segmentation and triangle thresholding techniques are used together to achieve good background segmentation of leaf images. Moreover, a Mamdani-Type Fuzzy Logic classification technique is used to accurately categorize leaf disease severity level. Leaf images taken from a real field with varying resolutions were tested using the implemented system to observe its effect on disease grade classification. Background segmentation using k-means clustering and triangle thresholding proved to be effective, even in non-uniform lighting conditions. Integration of a Fuzzy Logic system for leaf disease severity level classification yielded in classification accuracies of 98%. Furthermore, a robot is designed and implemented as a robotized Online system to provide field based analysis of plant health using visible and near infrared spectroscopy. Fusion of visible and near infrared images are used to calculate the Normalized Deference Vegetative Index (NDVI) to measure and monitor plant health. The robot is designed to have the functionality of moving across a specified path within an agriculture field and provide health information of leaves as well as position data. The system was tested in a tomato greenhouse under real field conditions. The developed system proved effective in accurately classifying plant health into one of 3 classes; underdeveloped, unhealthy, and healthy with an accuracy of 83%. A map with plant health and locations is produced for farmers and agriculturists to monitor the plant health across different areas. This system has the capability of providing early vital health analysis of plants for immediate action and possible selective pesticide spraying

    Challenges and opportunities of using ecological and remote sensing variables for crop pest and disease mapping

    Get PDF
    Crop pest and diseases are responsible for major economic losses in the agricultural systems in Africa resulting in food insecurity. Potential yield losses for major crops across Africa are mainly caused by pests and diseases. Total losses have been estimated at 70% with approximately 30% caused by inefficient crop protection practices. With newly emerging crop pests and disease, monitoring plant health and detecting pathogens early is essential to reduce disease spread and to facilitate effective management practices. While many pest and diseases can be acquired from another host or via the environment, the majority are transmitted by biological vectors. Thus, vector ecology can serve an indirect explanation of disease cycles, outbreaks, and prevalence. Hence, better understanding of the vector niche and the dependence of pest and disease processes on their specific spatial and ecological contexts is therefore required for better management and control. While research in disease ecology has revealed important life history of hosts with the surrounding environment, other aspects need to be explored to better understand vector transmission and control strategies. For instance, choosing appropriate farming practices have proved to be an alternative to the use of synthetic pesticides. For instance, intercropping can serve as a buffer against the spread of plant pests and pathogens by attracting pests away from their host plant and also increasing the distance between plants of the same species, making it more exigent for the pest to target the main crop. Many studies have explored the potential applications of geospatial technology in disease ecology. However, pest and disease mapping in crops is rather crudely done thus far, using Spatial Distribution Models (SDM) on a regional scale. Previous research has explored climatic data to model habitat suitability and the distribution of different crop pests and diseases. However, there are limitation to using climate data since it ignores the dispersal and competition from other factors which determines the distribution of vectors transmitting the disease, thus resulting in model over prediction. For instance, vegetation patterns and heterogeneity at the landscape level has been identified to play a key role in influencing the vector-host-pathogen transmission, including vector distribution, abundance and diversity at large. Such variables can be extracted from remote sensing dataset with high accuracy over a large extent. The use of remotely sensed variables in modeling crop pest and disease has proved to increase the accuracy and precision of the models by reducing over fitting as compared to when only climatic data which are interpolated over large areas thus disregarding landscape heterogeneity.When used, remotely sensed predictors may capture subtle variances in the vegetation characteristic or in the phenology linked with the niche of the vector transmitting the disease which cannot be explained by climatic variables. Subsequently, the full potential of remote sensing applications to detect changes in habitat condition of species remains uncharted. This study aims at exploring the potential behind developing a framework which integrates both ecological and remotely sensed dataset with a robust mapping/modelling approach with aim of developing an integrated pest management approach for pest and disease affecting both annual and perrennial crops and whom currently there is no cure or existing germplasm to control further spread across sub Saharan Africa.Herausforderungen und Möglichkeiten der Verwendung von ökologischen und Fernerkundungsvariablen für die Schädlings- und Krankheitskartierung Pflanzenschädlinge und Krankheiten in der Landwirtschaft sind für große wirtschaftliche Verluste in Afrika verantwortlich, die zu Ernährungsunsicherheit führen. Die Verluste werden auf 70% geschätzt, wobei etwa 30% auf ineffiziente Pflanzenschutzpraktiken zurückzuführen sind. Bei neu auftretenden Pflanzenschädlingen und Krankheiten ist die Überwachung des Pflanzenzustands und die frühzeitige Erkennung von Krankheitserregern unerlässlich, um die Ausbreitung von Krankheiten zu reduzieren und effektive Managementpraktiken zu erleichtern. Während viele Schädlinge und Krankheiten von einem anderen Wirt oder über die Umwelt erworben werden können, wird die Mehrheit durch biologische Vektoren übertragen. Daraus folgt, dass die Vektorökologie als indirekte Erklärung von Krankheitszyklen, Ausbrüchen und Prävalenz untersucht werden sollte. Um effektive Vektorkontrollmaßnahmen zu entwickeln ist ein besseres Verständnis der ökologischen Vektor-Nischen und der Abhängigkeit von Schädlings- und Krankheits-Prozessen von ihrem spezifischen räumlichen und ökologischen Kontext wichtig. Während die Forschung in der Krankheitsökologie wichtige Lebenszyklen von Wirten mit der Umgebung schon gut aufgezeigt hat, müssen weitere Aspekte noch besser untersucht werden, um Vektorübertragungs- und Kontroll-Strategien zu entwickeln. So hat sich beispielsweise die Wahl geeigneter Anbaumethoden als Alternative zum Einsatz synthetischer Pestizide erwiesen. In einigen Fällen wurde der Zwischenfruchtanbau als ‚Puffer' gegen die Ausbreitung von Pflanzenschädlingen und Krankheitserregern vorgeschlagen. Bei diesem Anbausystem werden Schädlinge von ihrer Wirtspflanze abgezogen und auch der Abstand zwischen Pflanzen derselben Art vergrößert (was eine Übertragung erschwert). Viele Studien haben bereits die Einsatzmöglichkeiten von Geodaten in der Krankheitsökologie untersucht. Die Kartierung von Schädlingen und Krankheiten in Nutzpflanzen ist jedoch bisher eher großskalig erfolgt, unter der Zunahme von sogenannten ‚Spatial Distribution Models (SDM)' auf regionaler Ebene. Etliche Studien haben diesbezüglich klimatische Daten verwendet, um die Eignung und Verteilung verschiedener Pflanzenschädlinge und Krankheiten zu modellieren. Es gibt jedoch Einschränkungen bei der Verwendung von Klimadaten, da dabei andere landschaftsbezogene Verbreitungs-Faktoren ignoriert werden, die die Verteilung der Vektoren und Krankheitserreger bestimmen, was zu einer Modell-Überprognose führt. Vegetationsmuster und Heterogenität auf Landschaftsebene beeinflussen maßgeblich die Diversität und Verteilung eines Vektors und spielen somit eine wichtige Rolle bei der Vektor-Wirt-Pathogen-Übertragung. Bei der Verwendung von Fernerkundungsdaten können subtile Abweichungen in der Vegetationscharakteristik oder in der Phänologie, die mit der Nische des Vektors verbunden sind, besser erfasst werden. Es besteht noch Forschungs-Bedarf hinsichtlich der Rolle von Fernerkundungsdaten bei der Verbesserung von Artenmodellen, die zum Ziel haben den Lebensraum von Krankheitsvektoren besser zu erfassen. Ziel dieser Studie ist es, das Potenzial für die Entwicklung eines Rahmens zu untersuchen, der sowohl ökologische als auch aus der Ferne erfasste Daten mit einem robusten Mapping- / Modellierungsansatz kombiniert, um einen integrierten Ansatz zur Schädlingsbekämpfung für Schädlinge und Krankheiten zu entwickeln, der sowohl einjährige als auch mehrjährige Kulturpflanzen betrifft Keine Heilung oder vorhandenes Keimplasma zur weiteren Verbreitung in Afrika südlich der Sahara

    Image Analysis and Machine Learning in Agricultural Research

    Get PDF
    Agricultural research has been a focus for academia and industry to improve human well-being. Given the challenges in water scarcity, global warming, and increased prices of fertilizer, and fossil fuel, improving the efficiency of agricultural research has become even more critical. Data collection by humans presents several challenges including: 1) the subjectiveness and reproducibility when doing the visual evaluation, 2) safety when dealing with high toxicity chemicals or severe weather events, 3) mistakes cannot be avoided, and 4) low efficiency and speed. Image analysis and machine learning are more versatile and advantageous in evaluating different plant characteristics, and this could help with agricultural data collection. In the first chapter, information related to different types of imaging (e.g., RGB, multi/hyperspectral, and thermal imaging) was explored in detail for its advantages in different agriculture applications. The process of image analysis demonstrated how target features were extracted for analysis including shape, edge, texture, and color. After acquiring features information, machine learning can be used to automatically detect or predict features of interest such as disease severity. In the second chapter, case studies of different agricultural applications were demonstrated including: 1) leaf damage symptoms, 2) stress evaluation, 3) plant growth evaluation, 4) stand/insect counting, and 5) evaluation for produce quality. Case studies showed that the use of image analysis is often more advantageous than visual rating. Advantages of image analysis include increased objectivity, speed, and more reproducibly reliable results. In the third chapter, machine learning was explored using romaine lettuce images from RD4AG to automatically grade for bolting and compactness (two of the important parameters for lettuce quality). Although the accuracy is at 68.4 and 66.6% respectively, a much larger data base and many improvements are needed to increase the model accuracy and reliability. With the advancement in cameras, computers with high computing power, and the development of different algorithms, image analysis and machine learning have the potential to replace part of the labor and improve the current data collection procedure in agricultural research. Advisor: Gary L. Hei

    A review of neural networks in plant disease detection using hyperspectral data

    Get PDF
    © 2018 China Agricultural University This paper reviews advanced Neural Network (NN) techniques available to process hyperspectral data, with a special emphasis on plant disease detection. Firstly, we provide a review on NN mechanism, types, models, and classifiers that use different algorithms to process hyperspectral data. Then we highlight the current state of imaging and non-imaging hyperspectral data for early disease detection. The hybridization of NN-hyperspectral approach has emerged as a powerful tool for disease detection and diagnosis. Spectral Disease Index (SDI) is the ratio of different spectral bands of pure disease spectra. Subsequently, we introduce NN techniques for rapid development of SDI. We also highlight current challenges and future trends of hyperspectral data
    corecore