626 research outputs found

    Parallelization of dynamic programming recurrences in computational biology

    Get PDF
    The rapid growth of biosequence databases over the last decade has led to a performance bottleneck in the applications analyzing them. In particular, over the last five years DNA sequencing capacity of next-generation sequencers has been doubling every six months as costs have plummeted. The data produced by these sequencers is overwhelming traditional compute systems. We believe that in the future compute performance, not sequencing, will become the bottleneck in advancing genome science. In this work, we investigate novel computing platforms to accelerate dynamic programming algorithms, which are popular in bioinformatics workloads. We study algorithm-specific hardware architectures that exploit fine-grained parallelism in dynamic programming kernels using field-programmable gate arrays: FPGAs). We advocate a high-level synthesis approach, using the recurrence equation abstraction to represent dynamic programming and polyhedral analysis to exploit parallelism. We suggest a novel technique within the polyhedral model to optimize for throughput by pipelining independent computations on an array. This design technique improves on the state of the art, which builds latency-optimal arrays. We also suggest a method to dynamically switch between a family of designs using FPGA reconfiguration to achieve a significant performance boost. We have used polyhedral methods to parallelize the Nussinov RNA folding algorithm to build a family of accelerators that can trade resources for parallelism and are between 15-130x faster than a modern dual core CPU implementation. A Zuker RNA folding accelerator we built on a single workstation with four Xilinx Virtex 4 FPGAs outperforms 198 3 GHz Intel Core 2 Duo processors. Furthermore, our design running on a single FPGA is an order of magnitude faster than competing implementations on similar-generation FPGAs and graphics processors. Our work is a step toward the goal of automated synthesis of hardware accelerators for dynamic programming algorithms

    Algorithmic skeleton framework for the orchestration of GPU computations

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia InformáticaThe Graphics Processing Unit (GPU) is gaining popularity as a co-processor to the Central Processing Unit (CPU), due to its ability to surpass the latter’s performance in certain application fields. Nonetheless, harnessing the GPU’s capabilities is a non-trivial exercise that requires good knowledge of parallel programming. Thus, providing ways to extract such computational power has become an emerging research topic. In this context, there have been several proposals in the field of GPGPU (Generalpurpose Computation on Graphics Processing Unit) development. However, most of these still offer a low-level abstraction of the GPU computing model, forcing the developer to adapt application computations in accordance with the SPMD model, as well as to orchestrate the low-level details of the execution. On the other hand, the higher-level approaches have limitations that prevent the full exploitation of GPUs when the purpose goes beyond the simple offloading of a kernel. To this extent, our proposal builds on the recent trend of applying the notion of algorithmic patterns (skeletons) to GPU computing. We propose Marrow, a high-level algorithmic skeleton framework that expands the set of skeletons currently available in this field. Marrow’s skeletons orchestrate the execution of OpenCL computations and introduce optimizations that overlap communication and computation, thus conjoining programming simplicity with performance gains in many application scenarios. Additionally, these skeletons can be combined (nested) to create more complex applications. We evaluated the proposed constructs by confronting them against the comparable skeleton libraries for GPGPU, as well as against hand-tuned OpenCL programs. The results are favourable, indicating that Marrow’s skeletons are both flexible and efficient in the context of GPU computing.FCT-MCTES - financing the equipmen

    Auto-Pipe and the X Language: A Toolset and Language for the Simulation, Analysis, and Synthesis of Heterogeneous Pipelined Architectures, Master\u27s Thesis, August 2006

    Get PDF
    Pipelining an algorithmis a popularmethod of increasing the performance of many computation-intensive applications. Often, one wants to form pipelines composed mostly of commonly used simple building blocks such as DSP components, simple math operations, encryption, or pattern matching stages. Additionally, one may desire to map these processing tasks to different computational resources based on their relative performance attributes (e.g., DSP operations on an FPGA). Auto-Pipe is composed of the X Language, a flexible interface language that aids the description of complex dataflow topologies (including pipelines); X-Com, a compiler for the X Language; X-Sim, a tool for modeling pipelined architectures based on measured, simulated, or derived task and communications behavior; X-Opt, a tool to optimize X applications under various metrics; and X-Dep, a tool for the automatic deployment of X-Com- or X-Sim-generated applications to real or simulated devices. This thesis presents an overview of the Auto-Pipe system, the design and use of the X Language, and an implementation of X-Com. Applications developed using the X Language are presented which demonstrate the effectiveness of describing algorithms using X, and the effectiveness of the Auto-Pipe development flow in analyzing and improving the performance of an application

    PARALLEL √3-SUBDIVISION with ANIMATION in CONSIDERATION of GEOMETRIC COMPLEXITY

    Get PDF
    We look at the broader field of geometric subdivision and the emerging field of parallel computing for the purpose of creating higher visual fidelity at an efficient pace. Primarily, we present a parallel algorithm for √3-Subdivision. When considering animation, we find that it is possible to do subdivision by providing only one variable input, with the rest being considered static. This reduces the amount of data transfer required to continually update a subdividing mesh. We can support recursive subdivision by applying the technique in passes. As a basis for analysis, we look at performance in an OpenCL implementation that utilizes a local graphics processing unit (GPU) and a parallel CPU. By overcoming current hardware limitations, we present an environment where general GPU computation of √3-Subdivision can be practical

    PiCo: A Domain-Specific Language for Data Analytics Pipelines

    Get PDF
    In the world of Big Data analytics, there is a series of tools aiming at simplifying programming applications to be executed on clusters. Although each tool claims to provide better programming, data and execution models—for which only informal (and often confusing) semantics is generally provided—all share a common under- lying model, namely, the Dataflow model. Using this model as a starting point, it is possible to categorize and analyze almost all aspects about Big Data analytics tools from a high level perspective. This analysis can be considered as a first step toward a formal model to be exploited in the design of a (new) framework for Big Data analytics. By putting clear separations between all levels of abstraction (i.e., from the runtime to the user API), it is easier for a programmer or software designer to avoid mixing low level with high level aspects, as we are often used to see in state-of-the-art Big Data analytics frameworks. From the user-level perspective, we think that a clearer and simple semantics is preferable, together with a strong separation of concerns. For this reason, we use the Dataflow model as a starting point to build a programming environment with a simplified programming model implemented as a Domain-Specific Language, that is on top of a stack of layers that build a prototypical framework for Big Data analytics. The contribution of this thesis is twofold: first, we show that the proposed model is (at least) as general as existing batch and streaming frameworks (e.g., Spark, Flink, Storm, Google Dataflow), thus making it easier to understand high-level data-processing applications written in such frameworks. As result of this analysis, we provide a layered model that can represent tools and applications following the Dataflow paradigm and we show how the analyzed tools fit in each level. Second, we propose a programming environment based on such layered model in the form of a Domain-Specific Language (DSL) for processing data collections, called PiCo (Pipeline Composition). The main entity of this programming model is the Pipeline, basically a DAG-composition of processing elements. This model is intended to give the user an unique interface for both stream and batch processing, hiding completely data management and focusing only on operations, which are represented by Pipeline stages. Our DSL will be built on top of the FastFlow library, exploiting both shared and distributed parallelism, and implemented in C++11/14 with the aim of porting C++ into the Big Data world

    Compiler techniques for scalable performance of stream programs on multicore architectures

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 211-222).Given the ubiquity of multicore processors, there is an acute need to enable the development of scalable parallel applications without unduly burdening programmers. Currently, programmers are asked not only to explicitly expose parallelism but also concern themselves with issues of granularity, load-balancing, synchronization, and communication. This thesis demonstrates that when algorithmic parallelism is expressed in the form of a stream program, a compiler can effectively and automatically manage the parallelism. Our compiler assumes responsibility for low-level architectural details, transforming implicit algorithmic parallelism into a mapping that achieves scalable parallel performance for a given multicore target. Stream programming is characterized by regular processing of sequences of data, and it is a natural expression of algorithms in the areas of audio, video, digital signal processing, networking, and encryption. Streaming computation is represented as a graph of independent computation nodes that communicate explicitly over data channels. Our techniques operate on contiguous regions of the stream graph where the input and output rates of the nodes are statically determinable. Within a static region, the compiler first automatically adjusts the granularity and then exploits data, task, and pipeline parallelism in a holistic fashion. We introduce techniques that data-parallelize nodes that operate on overlapping sliding windows of their input, translating serializing state into minimal and parametrized inter-core communication. Finally, for nodes that cannot be data-parallelized due to state, we are the first to automatically apply software-pipelining techniques at a coarse granularity to exploit pipeline parallelism between stateful nodes. Our framework is evaluated in the context of the StreamIt programming language. StreamIt is a high-level stream programming language that has been shown to improve programmer productivity in implementing streaming algorithms. We employ the StreamIt Core benchmark suite of 12 real-world applications to demonstrate the effectiveness of our techniques for varying multicore architectures. For a 16-core distributed memory multicore, we achieve a 14.9x mean speedup. For benchmarks that include sliding-window computation, our sliding-window data-parallelization techniques are required to enable scalable performance for a 16-core SMP multicore (14x mean speedup) and a 64-core distributed shared memory multicore (52x mean speedup).by Michael I. Gordon.Ph.D

    Dynamic task scheduling and binding for many-core systems through stream rewriting

    Get PDF
    This thesis proposes a novel model of computation, called stream rewriting, for the specification and implementation of highly concurrent applications. Basically, the active tasks of an application and their dependencies are encoded as a token stream, which is iteratively modified by a set of rewriting rules at runtime. In order to estimate the performance and scalability of stream rewriting, a large number of experiments have been evaluated on many-core systems and the task management has been implemented in software and hardware.In dieser Dissertation wurde Stream Rewriting als eine neue Methode entwickelt, um Anwendungen mit einer großen Anzahl von dynamischen Tasks zu beschreiben und effizient zur Laufzeit verwalten zu können. Dabei werden die aktiven Tasks in einem Datenstrom verpackt, der zur Laufzeit durch wiederholtes Suchen und Ersetzen umgeschrieben wird. Um die Performance und Skalierbarkeit zu bestimmen, wurde eine Vielzahl von Experimenten mit Many-Core-Systemen durchgeführt und die Verwaltung von Tasks über Stream Rewriting in Software und Hardware implementiert
    • …
    corecore