606 research outputs found

    Editorial for special issue: "Remote sensing of environmental changes in cold regions"

    Get PDF
    Cold regions, characterized by the presence of permafrost and extensive snow and ice cover, are significantly affected by changing climate. Of great importance is the ability to track abrupt and longer term changes to ice, snow, hydrology and terrestrial ecosystems that are occurring within these regions. Remote sensing allows for measurement of environmental variables at multiple spatial and temporal scales, providing key support for monitoring and interpreting the environmental changes occurring in cold regions. The recent advances in the application of remote sensing for the analysis of environmental changes in cold regions are documented in this Special Issue

    Remote Sensing of Environmental Changes in Cold Regions

    Get PDF
    This Special Issue gathers papers reporting recent advances in the remote sensing of cold regions. It includes contributions presenting improvements in modeling microwave emissions from snow, assessment of satellite-based sea ice concentration products, satellite monitoring of ice jam and glacier lake outburst floods, satellite mapping of snow depth and soil freeze/thaw states, near-nadir interferometric imaging of surface water bodies, and remote sensing-based assessment of high arctic lake environment and vegetation recovery from wildfire disturbances in Alaska. A comprehensive review is presented to summarize the achievements, challenges, and opportunities of cold land remote sensing

    Radar systems for the water resources mission, volume 1

    Get PDF
    The state of the art determination was made for radar measurement of: soil moisture, snow, standing and flowing water, lake and river ice, determination of required spacecraft radar parameters, study of synthetic-aperture radar systems to meet these parametric requirements, and study of techniques for on-board processing of the radar data. Significant new concepts developed include the following: scanning synthetic-aperture radar to achieve wide-swath coverage; single-sideband radar; and comb-filter range-sequential, range-offset SAR processing. The state of the art in radar measurement of water resources parameters is outlined. The feasibility for immediate development of a spacecraft water resources SAR was established. Numerous candidates for the on-board processor were examined

    HIRIS (High-Resolution Imaging Spectrometer: Science opportunities for the 1990s. Earth observing system. Volume 2C: Instrument panel report

    Get PDF
    The high-resolution imaging spectrometer (HIRIS) is an Earth Observing System (EOS) sensor developed for high spatial and spectral resolution. It can acquire more information in the 0.4 to 2.5 micrometer spectral region than any other sensor yet envisioned. Its capability for critical sampling at high spatial resolution makes it an ideal complement to the MODIS (moderate-resolution imaging spectrometer) and HMMR (high-resolution multifrequency microwave radiometer), lower resolution sensors designed for repetitive coverage. With HIRIS it is possible to observe transient processes in a multistage remote sensing strategy for Earth observations on a global scale. The objectives, science requirements, and current sensor design of the HIRIS are discussed along with the synergism of the sensor with other EOS instruments and data handling and processing requirements

    One Decade of Glacier Mass Changes on the Tibetan Plateau Derived from Multisensoral Remote Sensing Data

    Get PDF
    The Tibetan Plateau (TP) with an average altitude of 4,500 meters above sea level is characterized by many glaciers and ice caps. Glaciers are a natural indicator for climate variability in this high mountain environment where meteorological stations are rare or non-existent. In addition, the melt water released from the Tibetan glaciers is feeding the headwaters of the major Asian river systems and contributes to the rising levels of endorheic lakes on the plateau. As many people directly rely on the glacier melt water a continuous glacier monitoring program is necessary in this region. In situ measurements of glaciers are important, but are spatial limited due to large logistical efforts, physical constrains and high costs. Remote sensing techniques can overcome this gap and are suitable to complement in situ measurements on a larger scale. In the last decade several remote sensing studies dealt with areal changes of glaciers on the TP. However, glacier area changes only provide a delayed signal to a changing climate and the amount of melt water released from the glaciers cannot be quantified. Therefore it is important to measure the glacier mass balance. In order to estimate glacier mass balances and their spatial differences on the TP, several remote sensing techniques and sensors were synthesized in this thesis. In a first study data from the Ice Cloud and Elevation Satellite (ICESat) mission were employed. ICESat was in orbit between 2003 and 2009 and carried a laser altimeter which recorded highly accurate surface elevation measurements. As in mid-latitudes these measurements are rather sparse glaciers on the TP were grouped into eight climatological homogeneous sub-regions in order to perform a statistical sound analysis of glacier elevation changes. To assess surface elevation changes of a single mountain glacier from ICESat data, an adequate spatial sampling of ICESat measurements need to be present. This is the case for the Grosser Aletschgletscher, located in the Swiss Alps which served as a test site in this thesis. In another study data from the current TanDEM-X satellite mission and from the Shuttle Radar Topography Mission (SRTM) conducted in February 2000 were employed to calculate glacier elevation changes. In a co-authored study, these estimates could be compared with glacier elevation changes obtained from the current French Pléiades satellite mission. In order to calculate glacier mass balances, the derived elevation changes were combined with assumptions about glacier area and ice density in all studies. In this thesis contrasting patterns of glacier mass changes were found on the TP. With an ICESat derived estimate of -15.6±10.1 Gt/a between 2003 and 2009 the average glacier mass balance on the TP was clearly negative. However, some glaciers in the central and north-western part of the TP showed a neutral mass balance or a slightly positive anomaly which was also confirmed by data from the current TanDEM-X satellite mission. A possible explanation of this anomaly in mass balance could be a compensation of the temperature driven glacier melt due to an increase in precipitation

    Earth Resources: A continuing bibliography with indexes

    Get PDF
    This bibliography lists 623 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1 and June 30, 1983. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Vegetation, topography and snow melt at the Forest-Tundra Ecotone in arctic Europe: a study using synthetic aperture radar

    Get PDF
    This research was conducted as part of DART (Dynamic Response of the Forest-Tundra Ecotone to Environmental Change), a four year (1998-2002) European Commission funded international programme of research addressing the potential dynamic response of the (mountain birch) forest-tundra ecotone to environmental change. Satellite remote sensing was used to map landscape scale (lO(^1)-lO(^3) m) patterns of vegetation and spatial dynamics of snow melt at the forest-tundra ecotone at three sites along ca. an 8º latitudinal gradient in the Fermoscandian mountain range. Vegetation at the forest-tundra ecotone was mapped using visible -near infrared (VIR) satellite imagery, with class definition dependent on the timing of the acquisition of imagery (related to highly dynamic vegetation phenology) and spatial variation in the FTE. Multi-temporal spacebome ERS-2 synthetic aperture radar (SAR) was used for mapping snow melt. Comprehensive field measurements of snow properties and meteorological data combined with a physically based snow backscatter model indicated potential for mapping wet snow cover at each site. Significant temporal backscatter signatures enabled a classification algorithm to be developed to map the pattern of snow melt across the forest- tundra ecotone. However, diurnal and seasonal melt-freeze effects relative to the timing of ERS-2 SAR image acquisition effectively reduce the temporal resolution of data. Further, the study sites with large topographic variation and complex vegetative cover, provided a challenging operating environment and problems were identified with the robustness of classification during the later stages of snow melt because of the effects of vegetation. Significant associations were identified between vegetation, topography, and snow melt despite limitations in the snow mapping

    Earth resources: A continuing bibliography with indexes (issue 55)

    Get PDF
    This bibliography lists 368 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1 and September 30, 1987. Emphasis is placed on the use of remote sensing and geographical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Earth resources. A continuing bibliography with indexes, issue 24

    Get PDF
    This bibliography lists 345 reports, articles, and other documents introduced into the NASA scientific and technical information system between October 1, 1979 and December 31, 1979. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    ICEX: Ice and Climate Experiment. Report of science and applications working group

    Get PDF
    The Ice and Climate Experiment (ICEX), a proposed program of coordinated investigations of the ice and snow masses of the Earth (the "cryosphere") is described. These investigations are to be carried out with the help of satellite, aircraft, and surface based observations. Measurements derived from the investigations will be applied to an understanding of the role of the cryosphere in the system that determines the Earth's climate, to a better prediction of the responses of the ice and snow to climatic change, to studies of the basic nature of ice forms and ice dynamics, and to the development of operational techniques for assisting such activities in the polar regions as transportation, exploitation of natural resources, and petroleum exploration and production. A high-inclination satellite system with a set of remote-sensing instruments specially tailored to the task of observing the important features of snow, sea ice, and the ice sheets of Greenland and the Antarctic is to be used to record the near-simultaneous observations of multiple geophysical parameters by complementary sensors
    corecore