52,163 research outputs found

    Mapping Datasets to Object Storage System

    Full text link
    Access libraries such as ROOT and HDF5 allow users to interact with datasets using high level abstractions, like coordinate systems and associated slicing operations. Unfortunately, the implementations of access libraries are based on outdated assumptions about storage systems interfaces and are generally unable to fully benefit from modern fast storage devices. The situation is getting worse with rapidly evolving storage devices such as non-volatile memory and ever larger datasets. This project explores distributed dataset mapping infrastructures that can integrate and scale out existing access libraries using Ceph's extensible object model, avoiding re-implementation or even modifications of these access libraries as much as possible. These programmable storage extensions coupled with our distributed dataset mapping techniques enable: 1) access library operations to be offloaded to storage system servers, 2) the independent evolution of access libraries and storage systems and 3) fully leveraging of the existing load balancing, elasticity, and failure management of distributed storage systems like Ceph. They also create more opportunities to conduct storage server-local optimizations specific to storage servers. For example, storage servers might include local key/value stores combined with chunk stores that require different optimizations than a local file system. As storage servers evolve to support new storage devices like non-volatile memory, these server-local optimizations can be implemented while minimizing disruptions to applications. We will report progress on the means by which distributed dataset mapping can be abstracted over particular access libraries, including access libraries for ROOT data, and how we address some of the challenges revolving around data partitioning and composability of access operations

    ArrayBridge: Interweaving declarative array processing with high-performance computing

    Full text link
    Scientists are increasingly turning to datacenter-scale computers to produce and analyze massive arrays. Despite decades of database research that extols the virtues of declarative query processing, scientists still write, debug and parallelize imperative HPC kernels even for the most mundane queries. This impedance mismatch has been partly attributed to the cumbersome data loading process; in response, the database community has proposed in situ mechanisms to access data in scientific file formats. Scientists, however, desire more than a passive access method that reads arrays from files. This paper describes ArrayBridge, a bi-directional array view mechanism for scientific file formats, that aims to make declarative array manipulations interoperable with imperative file-centric analyses. Our prototype implementation of ArrayBridge uses HDF5 as the underlying array storage library and seamlessly integrates into the SciDB open-source array database system. In addition to fast querying over external array objects, ArrayBridge produces arrays in the HDF5 file format just as easily as it can read from it. ArrayBridge also supports time travel queries from imperative kernels through the unmodified HDF5 API, and automatically deduplicates between array versions for space efficiency. Our extensive performance evaluation in NERSC, a large-scale scientific computing facility, shows that ArrayBridge exhibits statistically indistinguishable performance and I/O scalability to the native SciDB storage engine.Comment: 12 pages, 13 figure

    The CDF Data Handling System

    Full text link
    The Collider Detector at Fermilab (CDF) records proton-antiproton collisions at center of mass energy of 2.0 TeV at the Tevatron collider. A new collider run, Run II, of the Tevatron started in April 2001. Increased luminosity will result in about 1~PB of data recorded on tapes in the next two years. Currently the CDF experiment has about 260 TB of data stored on tapes. This amount includes raw and reconstructed data and their derivatives. The data storage and retrieval are managed by the CDF Data Handling (DH) system. This system has been designed to accommodate the increased demands of the Run II environment and has proven robust and reliable in providing reliable flow of data from the detector to the end user. This paper gives an overview of the CDF Run II Data Handling system which has evolved significantly over the course of this year. An outline of the future direction of the system is given.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 7 pages, LaTeX, 4 EPS figures, PSN THKT00

    Rumble: Data Independence for Large Messy Data Sets

    Full text link
    This paper introduces Rumble, an engine that executes JSONiq queries on large, heterogeneous and nested collections of JSON objects, leveraging the parallel capabilities of Spark so as to provide a high degree of data independence. The design is based on two key insights: (i) how to map JSONiq expressions to Spark transformations on RDDs and (ii) how to map JSONiq FLWOR clauses to Spark SQL on DataFrames. We have developed a working implementation of these mappings showing that JSONiq can efficiently run on Spark to query billions of objects into, at least, the TB range. The JSONiq code is concise in comparison to Spark's host languages while seamlessly supporting the nested, heterogeneous data sets that Spark SQL does not. The ability to process this kind of input, commonly found, is paramount for data cleaning and curation. The experimental analysis indicates that there is no excessive performance loss, occasionally even a gain, over Spark SQL for structured data, and a performance gain over PySpark. This demonstrates that a language such as JSONiq is a simple and viable approach to large-scale querying of denormalized, heterogeneous, arborescent data sets, in the same way as SQL can be leveraged for structured data sets. The results also illustrate that Codd's concept of data independence makes as much sense for heterogeneous, nested data sets as it does on highly structured tables.Comment: Preprint, 9 page

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor
    corecore