44 research outputs found

    Multi-scale targeting of land degradation in northern Uzbekistan using satellite remote sensing

    Get PDF
    Advancing land degradation (LD) in the irrigated agro-ecosystems of Uzbekistan hinders sustainable development of this predominantly agricultural country. Until now, only sparse and out-of-date information on current land conditions of the irrigated cropland has been available. An improved understanding of this phenomenon as well as operational tools for LD monitoring is therefore a pre-requisite for multi-scale targeting of land rehabilitation practices and sustainable land management. This research aimed to enhance spatial knowledge on the cropland degradation in the irrigated agro-ecosystems in northern Uzbekistan to support policy interventions on land rehabilitation measures. At the regional level, the study combines linear trend analysis, spatial relational analysis, and logistic regression modeling to expose the LD trend and to analyze the causes. Time series of 250-m Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI), summed over the growing seasons of 2000-2010, were used to determine areas with an apparent negative vegetation trend; this was interpreted as an indicator of LD. The assessment revealed a significant decline in cropland productivity across 23% (94,835 ha) of the arable area. The results of the logistic modeling indicate that the spatial pattern of the observed trend is mainly associated with the level of the groundwater table, land-use intensity, low soil quality, slope, and salinity of the groundwater. To quantify the extent of the cropland degradation at the local level, this research combines object-based change detection and spectral mixture analysis for vegetation cover decline mapping based on multitemporal Landsat TM images from 1998 and 2009. Spatial distribution of fields with decreased vegetation cover is mainly associated with abandoned cropland and land with inherently low-fertility soils located on the outreaches of the irrigation system and bordering natural sandy deserts. The comparison of the Landsat-based map with the LD trend map yielded an overall agreement of 93%. The proposed methodological approach is a useful supplement to the commonly applied trend analysis for detecting LD in cases when plot-specific data are needed but satellite time series of high spatial resolution are not available. To contribute to land rehabilitation options, a GIS-based multi-criteria decision-making approach is elaborated for assessing suitability of degraded irrigated cropland for establishing Elaeagnus angustifolia L. plantations while considering the specific environmental setting of the irrigated agro-ecosystems. The approach utilizes expert knowledge, fuzzy logic, and weighted linear combination to produce a suitability map for the degraded irrigated land. The results reveal that degraded cropland has higher than average suitability potential for afforestation with E. angustifolia. The assessment allows improved understanding of the spatial variability of suitability of degraded irrigated cropland for E. angustifolia and, subsequently, for better-informed spatial planning decisions on land restoration. The results of this research can serve as decision-making support for agricultural planners and policy makers, and can also be used for operational monitoring of cropland degradation in irrigated lowlands in northern Uzbekistan. The elaborated approach can also serve as a basis for LD assessments in similar irrigated agro-ecosystems in Central Asia and elsewhere.Multisclare Bewertung der Landdegradation in Nord-Uzbekistan unter der Verwendung von Satellitenfernerkundung Die zunehmende Landdegradation (LD) in den bewässerten Agrarökosystemen in Usbekistan behindert die nachhaltige Entwicklung dieses vorwiegend landwirtschaftlich geprägten Landes. Bis heute sind nur wenige und veraltete Informationen über die aktuellen Bodenbedingungen der bewässerten Anbauflächen verfügbar. Ein besseres Verständnis dieses Phänomens sowie operationelle Werkzeuge für LD-Monitoring sind daher Voraussetzung für ein nachhaltiges Landmanagement sowie für Landrehabilitationsmaßnahmen. Ziel dieser Studie war es, das räumliche Verständnis der Degradierung von Anbaugebieten in den bewässerten Agrarökosystemsn des nördlichen Usbekistans zu verbessern, um staatliche Interventionen in Bezug auf Landrehabilitationsmaßnahmen zu unterstützen Auf der regionalen Ebene kombiniert die Studie lineare Trendanalyse, räumliche relationale Analyse sowie logistischer Regressionsmodellierung, um den LD-Trend darzustellen und Gründe zu analysieren. Zeitreihen von 250-m Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) Bildern wurden für den Zeitraum der Anbauperioden zwischen 2000-2010 untersucht, um Bereiche mit einem offensichtlich negativen Vegetationstrend zu ermitteln. Dieser negative Trend kann als Indikator für LD interpretiert werden. Die Untersuchung ergab eine signifikante Abnahme der Bodenproduktivität auf 23% (94,835 ha) der Anbaufläche. Zudem deuten die Ergebnisse der logistischen Modellierung darauf hin, dass das räumliche Muster des beobachteten Trends überwiegend mit der Höhe des Grundwasserspiegels, der Landnutzungsintensität, der geringen Bodenqualität, der Hangneigung sowie der Grundwasserversalzung zusammenhängt. Um das Ausmaß der Degradation der Anbauflächen auf der lokalen Ebene zu quantifizieren, kombiniert diese Studie objektbasierte Erkennung von Veränderungen und spektrale Mischungsanalyse für die Abnahme der Vegetationsbedeckung auf der Grundlage von multitemporalen Landsat-TM-Bildern im Zeitraum von 1998 bis 2009. Die räumliche Verteilung der Felder mit abnehmender Vegetationsbedeckung hängt überwiegend mit verlassenen Anbauflächen sowie mit nährstoffarmen Böden in den Randbereichen des Bewässerungssystems und an den Grenzen zu natürlichen Sandwüsten zusammen. Ein Vergleich mit der Karte des LD-Trends ergab insgesamt eine Übereinstimmung von 93%. Der vorgeschlagene Ansatz ist eine nützliche Ergänzung zu der häufig angewendeten Trendanalyse für die Ermittlung von LD in Regionen, für die keine Satellitenbildzeitreihen mit hoher Auflösung verfügbar sind. Als Beitrag zu Landrehabilitationsmöglichkeiten, wird ein GIS-basierter Multi-Kriterien-Ansatz zur Einschätzung der Eignung von degradierten bewässerten Anbauflächen für Elaeagnus angustifolia L. Plantagen beschrieben, der gleichzeitig die spezifischen Umweltbedingungen der bewässerten Agrarökosysteme berücksichtigt. Dieser Ansatz beinhaltet Expertenwissen, Fuzzy-Logik und gewichtete lineare Kombination, um eine Eignungskarte für die bewässerten degradierten Anbauflächen herzustellen. Die Ergebnisse zeigen, dass diese Flächen ein überdurchschnittliches Eignungspotenzial für die Aufforstung mit E. angustifolia aufweisen. Diese Studie trägt zu einem verbesserten Verständnis der räumlichen Variabilität der Eignung von solchen Flächen für E. angustifolia bei. Die Ergebnisse dieser Studie können als Entscheidungshilfe für landwirtschaftliche Planer und politische Entscheidungsträger sowie für verbesserte Landrehabilitationsmaßnahmen und operationelles Monitoring der Degradation von Anbauflächen im nördlichen Usbekistan eingesetzt werden. Zudem kann der beschriebene Ansatz als Grundlage für LD-Untersuchungen in ähnlichen bewässerten Agrarökosystemen in Zentralasien und anderswo dienen

    A Remote Sensing-Based Analysis of the Impact of Syrian Crisis on Agricultural Land Abandonment in Yarmouk River Basin

    Get PDF
    In this study, we implemented a remote sensing-based approach for monitoring abandoned agricultural land in the Yarmouk River Basin (YRB) in Southern Syria and Northern Jordan during the Syrian crisis. A time series analysis for the Normalized Difference Vegetation Index (NDVI) and Normalized Difference Moisture Index (NDMI) was conducted using 1650 multi-temporal images from Landsat-5 and Landsat-8 between 1986 and 2021. We analyzed the agricultural phenological profiles and investigated the impact of the Syrian crisis on agricultural activities in YRB. The analysis was performed using JavaScript commands in Google Earth Engine. The results confirmed the impact of the Syrian crisis on agricultural land use. The phenological characteristics of NDVI and NDMI during the crisis (2013–2021) were compared to the phenological profiles for the period before the crisis (1986–2010). The NDVI and NDMI profiles had smooth, bell-shaped, and single beak NDVI and NDMI values during the period of crisis in comparison to those irregular phenological profiles for the period before the crisis or during the de-escalation/reconciliation period in the study area. The maximum average NDVI and NDMI values was found in March during the crisis, indicating the progress of natural vegetation and fallow land, while they fluctuated between March and April before the crisis or during the de-escalation/reconciliation period, indicating regular agricultural and cultivation practices

    Climate contributions to vegetation variations in Central Asian drylands:Pre- and post-USSR collapse

    Get PDF
    Central Asia comprises a large fraction of the world’s drylands, known to be vulnerable to climate change. We analyzed the inter-annual trends and the impact of climate variability in the vegetation greenness for Central Asia from 1982 to 2011 using GIMMS3g normalized difference vegetation index (NDVI) data. In our study, most areas showed an increasing trend during 1982–1991, but experienced a significantly decreasing trend for 1992–2011. Vegetation changes were closely coupled to climate variables (precipitation and temperature) during 1982–1991 and 1992–2011, but the response trajectories differed between these two periods. The warming trend in Central Asia initially enhanced the vegetation greenness before 1991, but the continued warming trend subsequently became a suppressant of further gains in greenness afterwards. Precipitation expanded its influence on larger vegetated areas in 1992–2011 when compared to 1982–1991. Moreover, the time-lag response of plants to rainfall tended to increase after 1992 compared to the pre-1992 period, indicating that plants might have experienced functional transformations to adapt the climate change during the study period. The impact of climate on vegetation was significantly different for the different sub-regions before and after 1992, coinciding with the collapse of the Union of Soviet Socialist Republics (USSR). It was suggested that these spatio-temporal patterns in greenness change and their relationship with climate change for some regions could be explained by the changes in the socio-economic structure resulted from the USSR collapse in late 1991. Our results clearly illustrate the combined influence of climatic/anthropogenic contributions on vegetation growth in Central Asian drylands. Due to the USSR collapse, this region represents a unique case study of the vegetation response to climate changes under different climatic and socio-economic conditions

    Mapping winter wheat with combinations of temporally aggregated Sentinel-2 and Landsat-8 data in Shandong Province, China

    Get PDF
    Winter wheat is one of the major cereal crops in China. The spatial distribution of winter wheat planting areas is closely related to food security; however, mapping winter wheat with time-series finer spatial resolution satellite images across large areas is challenging. This paper explores the potential of combining temporally aggregated Landsat-8 OLI and Sentinel-2 MSI data available via the Google Earth Engine (GEE) platform for mapping winter wheat in Shandong Province, China. First, six phenological median composites of Landsat-8 OLI and Sentinel-2 MSI reflectance measures were generated by a temporal aggregation technique according to the winter wheat phenological calendar, which covered seedling, tillering, over-wintering, reviving, jointing-heading and maturing phases, respectively. Then, Random Forest (RF) classifier was used to classify multi-temporal composites but also mono-temporal winter wheat development phases and mono-sensor data. The results showed that winter wheat could be classified with an overall accuracy of 93.4% and F1 measure (the harmonic mean of producer’s and user’s accuracy) of 0.97 with temporally aggregated Landsat-8 and Sentinel-2 data were combined. As our results also revealed, it was always good to classify multi-temporal images compared to mono-temporal imagery (the overall accuracy dropped from 93.4% to as low as 76.4%). It was also good to classify Landsat-8 OLI and Sentinel-2 MSI imagery combined instead of classifying them individually. The analysis showed among the mono-temporal winter wheat development phases that the maturing phase’s and reviving phase’s data were more important than the data for other mono-temporal winter wheat development phases. In sum, this study confirmed the importance of using temporally aggregated Landsat-8 OLI and Sentinel-2 MSI data combined and identified key winter wheat development phases for accurate winter wheat classification. These results can be useful to benefit on freely available optical satellite data (Landsat-8 OLI and Sentinel-2 MSI) and prioritize key winter wheat development phases for accurate mapping winter wheat planting areas across China and elsewhere

    Land Degradation Assessment with Earth Observation

    Get PDF
    This Special Issue (SI) on “Land Degradation Assessment with Earth Observation” comprises 17 original research papers with a focus on land degradation in arid, semiarid and dry-subhumid areas (i.e., desertification) in addition to temperate rangelands, grasslands, woodlands and the humid tropics. The studies cover different spatial, spectral and temporal scales and employ a wealth of different optical and radar sensors. Some studies incorporate time-series analysis techniques that assess the general trend of vegetation or the timing and duration of the reduction in biological productivity caused by land degradation. As anticipated from the latest trend in Earth Observation (EO) literature, some studies utilize the cloud-computing infrastructure of Google Earth Engine to cope with the unprecedented volume of data involved in current methodological approaches. This SI clearly demonstrates the ever-increasing relevance of EO technologies when it comes to assessing and monitoring land degradation. With the recently published IPCC Reports informing us of the severe impacts and risks to terrestrial and freshwater ecosystems and the ecosystem services they provide, the EO scientific community has a clear obligation to increase its efforts to address any remaining gaps—some of which have been identified in this SI—and produce highly accurate and relevant land-degradation assessment and monitoring tools

    Land cover change from national to global scales:A spatiotemporal assessment of trajectories, transitions and drivers

    Get PDF
    Changes in global land cover (LC) have significant consequences for global environmental change, impacting the sustainability of biogeochemical cycles, ecosystem services, biodiversity, and food security. Different forms of LC change have taken place across the world in recent decades due to a combination of natural and anthropogenic drivers, however, the types of change and rates of change have traditionally been hard to quantify. This thesis exploits the properties of the recently released ESA-CCI-LC product – an internally consistent, high-resolution annual time-series of global LC extending from 1992 to 2018. Specifically, this thesis uses a combination of trajectories and transition maps to quantify LC changes over time at national, continental and global scales, in order to develop a deeper understanding of what, where and when significant changes in LC have taken place and relates these to natural and anthropogenic drivers. This thesis presents three analytical chapters that contribute to achieving the objectives and the overarching aim of the thesis. The first analytical chapter initially focuses on the Nile Delta region of Egypt, one of the most densely populated and rapidly urbanising regions globally, to quantify historic rates of urbanisation across the fertile agricultural land, before modelling a series of alternative futures in which these lands are largely protected from future urban expansion. The results show that 74,600 hectares of fertile agricultural land in the Nile Delta (Old Lands) was lost to urban expansion between 1992 and 2015. Furthermore, a scenario that encouraged urban expansion into the desert and adjacent to areas of existing high population density could be achieved, hence preserving large areas of fertile agricultural land within the Nile Delta. The second analytical chapter goes on to examine LC changes across sub-Saharan Africa (SSA), a complex and diverse environment, through the joint lenses of political regions and ecoregions, differentiating between natural and anthropogenic signals of change and relating to likely drivers. The results reveal key LC change processes at a range of spatial scales, and identify hotspots of LC change. The major five key LC change processes were: (i) “gain of dry forests” covered the largest extent and was distributed across the whole of SSA; (ii) “greening of deserts” found adjacent to desert areas (e.g., the Sahel belt); (iii) “loss of tree-dominated savanna” extending mainly across South-eastern Africa; (iv) “loss of shrub-dominated savanna” stretching across West Africa, and “loss of tropical rainforests” unexpectedly covering the smallest extent, mainly in the DRC, West Africa and Madagascar. The final analytical chapter considers LC change at the global scale, providing a comprehensive assessment of LC gains and losses, trajectories and transitions, including a complete assessment of associated uncertainties. This chapter highlights variability between continents and identifies locations of high LC dynamism, recognising global hotspots for sustainability challenges. At the national scale, the chapter identifies the top 10 countries with the largest percentages of forest loss and urban expansion globally. The results show that the majority of these countries have stabilised their forest losses, however, urban expansion was consistently on the rise in all countries. The thesis concludes with recommendations for future research as global LC products become more refined (spatially, temporally and thematically) allowing deeper insights into the causes and consequences of global LC change to be determined

    Using satellite remote sensing and hydrologic modeling to improve understanding of crop management and agricultural water use at regional to global scales.

    Full text link
    Thesis (Ph. D.)--Boston UniversityCroplands are essential to human welfare. In the coming decades , croplands will experience substantial stress from climate change, population growth, changing diets, urban expansion, and increased demand for biofuels. Food security in many parts of the world therefore requires informed crop management and adaptation strategies. In this dissertation, I explore two key dimensions of crop management with significant potential to improve adaptation pathways: irrigation and crop calendars. Irrigation, which is widely used to boost crop yields, is a key strategy for adapting to changes in drought frequency and duration. However, irrigation competes with household, industrial, and environmental needs for freshwa t er r esources. Accurate information regarding irrigation patterns is therefore required to develop strategies that reduce unsustainable water use. To address this need, I fused information from remote sensing, climate datasets, and crop inventories to develop a new global database of rain-fed, irrigated, and paddy croplands. This database describes global agricultural water management with good realism and at higher spatial resolution than existing maps. Crop calendar management helps farmers to limit crop damage from heat and moisture stress. However, global crop calendar information currently lacks spatial and temporal detail. In the second part of my dissertation I used remote sensing to characterize global cropping patterns annually, from 2001-2010, at 0.08 degree spatial resolution. Comparison of this new dataset with existing sources of crop calendar data indicates that remote sensing is able to correct substantial deficiencies in available data sources. More importantly, the database provides previously unavailable information related to year-to-year variability in cropping patterns. Asia, home to roughly one half of the Earth's population, is expected to experience significant food insecurity in coming decades. In the final part of my dissertation, I used a water balance model in combination with the data sets described above to characterize the sensitivity of agricultural water use in Asia to crop management. Results indicate that water use in Asia depends strongly on both irrigation and crop management, and that previous studies underestimate agricultural water use in this region. These results support policy development focused on improving the resilience of agricultural systems in Asia
    corecore