284 research outputs found

    Mapping annual forest cover in sub-humid and semi-arid Regions through analysis of Landsat and PALSAR imagery

    Get PDF
    Accurately mapping the spatial distribution of forests in sub-humid to semi-arid regions over time is important for forest management but a challenging task. Relatively large uncertainties still exist in the spatial distribution of forests and forest changes in the sub-humid and semi-arid regions. Numerous publications have used either optical or synthetic aperture radar (SAR) remote sensing imagery, but the resultant forest cover maps often have large errors. In this study, we propose a pixel- and rule-based algorithm to identify and map annual forests from 2007 to 2010 in Oklahoma, USA, a transitional region with various climates and landscapes, using the integration of the L-band Advanced Land Observation Satellite (ALOS) PALSAR Fine Beam Dual Polarization (FBD) mosaic dataset and Landsat images. The overall accuracy and Kappa coefficient of the PALSAR/Landsat forest map were about 88.2% and 0.75 in 2010, with the user and producer accuracy about 93.4% and 75.7%, based on the 3270 random ground plots collected in 2012 and 2013. Compared with the forest products from Japan Aerospace Exploration Agency (JAXA), National Land Cover Database (NLCD), Oklahoma Ecological Systems Map (OKESM) and Oklahoma Forest Resource Assessment (OKFRA), the PALSAR/Landsat forest map showed great improvement. The area of the PALSAR/Landsat forest was about 40,149 km2 in 2010, which was close to the area from OKFRA (40,468 km2), but much larger than those from JAXA (32,403 km2) and NLCD (37,628 km2). We analyzed annual forest cover dynamics, and the results show extensive forest cover loss (2761 km2, 6.9% of the total forest area in 2010) and gain (3630 km2, 9.0%) in southeast and central Oklahoma, and the total area of forests increased by 684 km2 from 2007 to 2010. This study clearly demonstrates the potential of data fusion between PALSAR and Landsat images for mapping annual forest cover dynamics in sub-humid to semi-arid regions, and the resultant forest maps would be helpful to forest management.This study was supported in part by research grants from the National Institute of Food and Agriculture, U.S. Department of Agriculture (2013-69002), the National Science Foundation (NSF) EPSCoR program (OIA-1301789), and the Department of the Interior, United States Geological Survey to AmericaView (G14AP00002).Ye

    Estimating aboveground woody biomass change in Kalahari woodland: combining field, radar, and optical data sets

    Get PDF
    Maps that accurately quantify aboveground vegetation biomass (AGB) are essential for ecosystem monitoring and conservation. Throughout Namibia, four vegetation change processes are widespread, namely, deforestation, woodland degradation, the encroachment of the herbaceous and grassy layers by woody strata (woody thickening), and woodland regrowth. All of these vegetation change processes affect a range of key ecosystem services, yet their spatial and temporal dynamics and contributions to AGB change remain poorly understood. This study quantifies AGB associated with the different vegetation change processes over an 8-year period, for a region of Kalahari woodland savannah in northern Namibia. Using data from 101 forest inventory plots collected during two field campaigns (2014–2015), we model AGB as a function of the Advanced Land Observing Satellite Phased Array L-band synthetic aperture radar (PALSAR and PALSAR-2) and dry season Landsat vegetation index composites, for two periods (2007 and 2015). Differences in AGB between 2007 and 2015 were assessed and validated using independent data, and changes in AGB for the main vegetation processes are quantified for the whole study area (75,501 km2). We find that woodland degradation and woody thickening contributed a change in AGB of −14.3 and 2.5 Tg over 14% and 3.5% of the study area, respectively. Deforestation and regrowth contributed a smaller portion of AGB change, i.e. −1.9 and 0.2 Tg over 1.3% and 0.2% of the study area, respectively

    Remote sensing environmental change in southern African savannahs : a case study of Namibia

    Get PDF
    Savannah biomes cover a fifth of Earth’s surface, harbour many of the world’s most iconic species and most of its livestock and rangeland, while sustaining the livelihoods of an important proportion of its human population. They provide essential ecosystem services and functions, ranging from forest, grazing and water resources, to global climate regulation and carbon sequestration. However, savannahs are highly sensitive to human activities and climate change. Across sub-Saharan Africa, climatic shifts, destructive wars and increasing anthropogenic disturbances in the form of agricultural intensification and urbanization, have resulted in widespread land degradation and loss of ecosystem services. Yet, these threatened ecosystems are some of the least studied or protected, and hence should be given high conservation priority. Importantly, the scale of land degradation has not been fully explored, thereby comprising an important knowledge gap in our understanding of ecosystem services and processes, and effectively impeding conservation and management of these biodiversity hotspots. The primary drivers of land degradation include deforestation, triggered by the increasing need for urban and arable land, and concurrently, shrub encroachment, a process in which the herbaceous layer, a defining characteristic of savannahs, is replaced with hardy shrubs. These processes have significant repercussions on ecosystem service provision, both locally and globally, although the extents, drivers and impacts of either remain poorly quantified and understood. Additionally, regional aridification anticipated under climate change, will lead to important shifts in vegetation composition, amplified warming and reduced carbon sequestration. Together with a growing human population, these processes are expected to compound the risk of land degradation, thus further impacting key ecosystem services. Namibia is undergoing significant environmental and socio-economic changes. The most pervasive change processes affecting its savannahs are deforestation, degradation and shrub encroachment. Yet, the extent and drivers of such change processes are not comprehensively quantified, nor are the implications for rural livelihoods, sustainable land management, the carbon cycle, climate and conservation fully explored. This is partly due to the complexities of mapping vegetation changes with satellite data in savannahs. They are naturally spatially and temporally variable owing to erratic rainfall, divergent plant functional type phenologies and extensive anthropogenic impacts such as fire and grazing. Accordingly, this thesis aims to (i) quantify distinct vegetation change processes across Namibia, and (ii) develop methodologies to overcome limitations inherent in savannah mapping. Multi-sensor satellite data spanning a range of spatial, temporal and spectral resolutions are integrated with field datasets to achieve these aims, which are addressed in four journal articles. Chapters 1 and 2 are introductory. Chapter 3 exploits the Landsat archive to track changes in land cover classes over five decades throughout the Namibian Kalahari woodlands. The approach addresses issues implicit in change detection of savannahs by capturing the distinct phenological phases of woody vegetation and integrating multi-sensor, multi-source data. Vegetation extent was found to have decreased due to urbanization and small-scale arable farming. An assessment of the limitations leads to Chapter 4, which elaborates on the previous chapter by quantifying aboveground biomass changes associated with deforestation and shrub encroachment. The approach centres on fusing multiple satellite datasets, each acting as a proxy for distinct vegetation properties, with calibration/validation data consisting of concurrent field and LiDAR measurements. Biomass losses predominate, demonstrating the contribution of land management to ecosystem carbon changes. To identify whether biomass is declining across the country, Chapter 5 focuses on regional, moderate spatial resolution time-series analyses. Phenological metrics extracted from MODIS data are used to model observed fractional woody vegetation cover, a proxy for biomass. Trends in modelled fractional woody cover are then evaluated in relation to the predominant land-uses and precipitation. Negative trends slightly outweighed positive trends, with decreases arising largely in protected, urban and communal areas. Since precipitation is a fundamental control on vegetation, Chapter 6 investigates its relation to NDVI, by assessing to what extent observed trends in vegetation cover are driven by rainfall. NDVI is modelled as a function of precipitation, with residuals assumed to describe the fraction of NDVI not explained by rainfall. Mean annual rainfall and rainfall amplitude show a positive trend, although extensive “greening” is unrelated to rainfall. NDVI amplitude, used as a proxy for vegetation density, indicates a widespread shift to a denser condition. In Chapter 7, trend analysis is applied to a Landsat time-series to overcome spatial and temporal limitations characteristic of the previous approaches. Results, together with those of the previous chapters, are synthesized and a synopsis of the main findings is presented. Vegetation loss is predominantly caused by demand for urban and arable land. Greening trends are attributed to shrub encroachment and to a lesser extent conservation laws, agroforestry and rangeland management, with precipitation presenting little influence. Despite prevalent greening, degradation processes associated with shrub encroachment, including soil erosion, are likely to be widespread. Deforestation occurs locally while shrub encroachment occurs regionally. This thesis successfully integrates multi-source data to map, measure and monitor distinct change processes across scales

    Monitoring ecosystem dynamics in semi-arid environments using multi-sensor Earth-observation

    Get PDF
    Climate change and a growing human population are instigating major changes on the Earth’s surface. Monitoring and understanding these changes as they unfold is critical for society and the environment. Satellite remote sensing provides the only means of achieving this over large spatial and temporal scales, and major progress in the application of Earth-observation imagery has been made since the beginning of the space age in the mid-20th century. However, savannahs - dynamic systems comprised of shrubs, trees, and grass species - have proved challenging for EO-based monitoring. Yet, these ecosystems cover almost 25% of the Earth’s surface and are home to some of the poorest people on the planet. This thesis investigates the use of EO for monitoring ecosystem dynamics in African savannahs, focusing specially on woody cover and biomass provision. One of the most common Earth-observation (EO) based tools for monitoring vegetation is the Normalised Difference Vegetation Index (NDVI). A detailed review of the application of NDVI for monitoring land degradation was undertaken. This covered the historical context and ongoing debates around NDVI analyses, and highlighted key research gaps. NDVI was then used to map grass biomass for the Kruger National Park in South Africa, by combining in situ data with a downscaled NDVI dataset in a machine-learning framework. These predictions highlighted that the NDVI-biomass relationship is vulnerable to overfi�tting in space and time, due to spatial autocorrelation and a variable species composition, respectively. The NDVI was further explored at the continental scale using multiple time-series analyses. These revealed that a majority of African savannahs have only experienced vegetation greening in the 1982-2016 period. Areas of declining vegetation, or changes in the trend direction, were associated with phenological changes (i.e. a shrinking growth season), woodland degradation, or population increases. Finally, fractional woody vegetation cover was mapped for the Limpopo province of South Africa using Landsat spectral metrics and ALOS PALSAR radar imagery and a series of Random Forest regression models. The most accurate models combined multi-seasonal Landsat data and the radar layers. However, this was only marginally more accurate than just using dry and wet season metrics alone. When using a single season of imagery, the dry season preformed best. These results were reaffirmed for categorical savannah land-cover classifications, highlighting the importance of multi-sensor and multi-temporal data. The thesis contributes new insights for monitoring savannahs using EO imagery. By combining EO data with modern statistics and machine-learning methods novel insights to ecological and environmental issues can be gained. In the coming years, the increasing number of operational sensors and the volume of data collected will be of great benefit for environmental monitoring, especially in savannahs

    Remote Sensing of Savannas and Woodlands

    Get PDF
    Savannas and woodlands are one of the most challenging targets for remote sensing. This book provides a current snapshot of the geographical focus and application of the latest sensors and sensor combinations in savannas and woodlands. It includes feature articles on terrestrial laser scanning and on the application of remote sensing to characterization of vegetation dynamics in the Mato Grosso, Cerrado and Caatinga of Brazil. It also contains studies focussed on savannas in Europe, North America, Africa and Australia. It should be important reading for environmental practitioners and scientists globally who are concerned with the sustainability of the global savanna and woodland biome

    Mapping fractional woody cover in semi-arid savannahs using multi-seasonal composites from Landsat data

    Get PDF
    Increasing attention is being directed at mapping the fractional woody cover of savannahs using Earth-observation data. In this study, we test the utility of Landsat TM/ ETM-based spectral-temporal variability metrics for mapping regional-scale woody cover in the Limpopo Province of South Africa, for 2010. We employ a machine learning framework to compare the accuracies of Random Forest models derived using metrics calculated from different seasons. We compare these results to those from fused Landsat-PALSAR data to establish if seasonal metrics can compensate for structural information from the PALSAR signal. Furthermore, we test the applicability of a statistical variable selection method, the recursive feature elimination (RFE), in the automation of the model building process in order to reduce model complexity and processing time. All of our tests were repeated at four scales (30, 60, 90, and 120 m-pixels) to investigate the role of spatial resolution on modelled accuracies. Our results show that multi-seasonal composites combining imagery from both the dry and wet seasons produced the highest accuracies (R2 = 0.77, RMSE = 9.4, at the 120 m scale). When using a single season of observations, dry season imagery performed best (R2 = 0.74, RMSE = 9.9, at the 120 m resolution). Combining Landsat and radar imagery was only marginally beneficial, offering a mean relative improvement of 1% in accuracy at the 120 m scale. However, this improvement was concentrated in areas with lower densities of woody coverage (<30%), which are areas of concern for environmental monitoring. At finer spatial resolutions, the inclusion of SAR data actually reduced accuracies. Overall, the RFE was able to produce the most accurate model (R2 = 0.8, RMSE = 8.9, at the 120 m pixel scale). For mapping savannah woody cover at the 30 m pixel scale, we suggest that monitoring methodologies continue to exploit the Landsat archive, but should aim to use multi-seasonal derived information. When the coarser 120 m pixel scale is adequate, integration of Landsat and SAR data should be considered, especially in areas with lower woody cover densities. The use of multiple seasonal compositing periods offers promise for large-area mapping of savannahs, even in regions with a limited historical Landsat coverage

    An assessment of tropical dryland forest ecosystem biomass and climate change impacts in the Kavango-Zambezi (KAZA) region of Southern Africa

    Get PDF
    The dryland forests of the Kavango-Zambezi (KAZA) region in Southern Africa are highly susceptible to disturbances from an increase in human population, wildlife pressures and the impacts of climate change. In this environment, reliable forest extent and structure estimates are difficult to obtain because of the size and remoteness of KAZA (519,912 km²). Whilst satellite remote sensing is generally well-suited to monitoring forest characteristics, there remain large uncertainties about its application for assessing changes at a regional scale to quantify forest structure and biomass in dry forest environments. This thesis presents research that combines Synthetic Aperture Radar, multispectral satellite imagery and climatological data with an inventory from a ground survey of woodland in Botswana and Namibia in 2019. The research utilised a multi-method approach including parametric and non-parametric algorithms and change detection models to address the following objectives: (1) To assess the feasibility of using openly accessible remote sensing data to estimate the dryland forest above ground biomass (2) to quantify the detail of vegetation dynamics using extensive archives of time series satellite data; (3) to investigate the relationship between fire, soil moisture, and drought on dryland vegetation as a means of characterising spatiotemporal changes in aridity. The results establish that a combination of radar and multispectral imagery produced the best fit to the ground observations for estimating forest above ground biomass. Modelling of the time-series shows that it is possible to identify abrupt changes, longer-term trends and seasonality in forest dynamics. The time series analysis of fire shows that about 75% of the study area burned at least once within the 17-year monitoring period, with the national parks more frequently affected than other protected areas. The results presented show a significant increase in dryness over the past 2 decades, with arid and semi-arid regions encroaching at the expense of dry sub-humid, particularly in the south of the region, notably between 2011-2019

    Remote sensing based assessment of small wetlands in East Africa

    Get PDF
    Small wetlands in East Africa have in the past few decades become focal points of a broad spectrum of agricultural production and other land-uses. Climate change and population growth are the major factors attributing to increasing use and change of the wetlands. This study aimed at detecting the distribution and extent of small wetlands in Tanzania and Kenya, classifying them into different types, identifying their use patterns and quantifying changes that have taken place from 1976 to 2003. Field and aerial surveys were conducted; microwave (ALOS-PALSAR, ENVISAT-ASAR, and TerraSAR-X) and optical (LANDSAT and aerial photographs) data, were used to detect spatial distribution of the wetlands using automated and semi automated techniques. Time series LANDSAT images were applied in classification and change detection by post classification comparison (PCC), change vector analysis (CVA) and land use change mapper (LCM). Maps and socio-economic data were also gathered. Driving forces of change were determined qualitatively using group discussions with key informants. Two types of small wetlands were mainly identified, inland valleys located in the humid highlands and covering 87% of the total surveyed area as well as floodplains in sub-humid lowlands and semi-arid highlands covering the remaining 13%. Eight major land cover and uses were identified with accuracies between 82.76 and 95.17%. Cropland was a dominant land use occupying 57% of the inland valleys and 35% in the flood plains; others included open water, floating vegetation, permanent papyrus swamps, semi-natural vegetation, grazing, shrubs, settlements and bare land. The cover and uses are unevenly distributed between the types and sites. The major change detected was expansion of cropped land at the expense of natural vegetation. This accounted for 56% of the change in the highland flood plain and 52% in the lowland floodplain. Shrubs proliferated in all wetlands, which is indicated by more than 50% compared to their area coverage in 1976. Climate change, population increase, unemployment, market access, wetland physical access and insufficient knowledge on the use are among the proximate causes of the wetland changes. Underlying factors like poor enforcement of wetland law and policy in Kenya and lack of the same in Tanzania have accelerated these changes. Combinations of remote sensing data and image processing methods played an important role in achieving the objectives of the study. Optical data proved to be very useful in delineation of small wetlands while microwave data delineated larger areas. The spatial resolution of the images has also proved to be a key factor in studies of small wetlands. To ameliorate the wetlands, it is recommended that a balance is attained between the use and conservation. Policy formulation and law enactment in Tanzania and enforcement of the existing policy and law in Kenya is seen to support wise use. Awareness creation is also important to lessen the over and inappropriate utilization of the wetlands

    Mapping mountain peatlands and wet meadows using multi-date, multi-sensor remote sensing in the Cordillera Blanca, Peru

    Get PDF
    Wetlands (called bofedales in the Andes of Peru) are abundant and important components of many mountain ecosystems across the globe. They provide many benefits including water storage, high quality habitat, pasture, nutrient sinks and transformations, and carbon storage. The remote and rugged setting of mountain wetlands creates challenges for mapping, typically leading to misclassification and underestimates of wetland extent. We used multi-date, multi-sensor radar and optical imagery (Landsat TM/PALSAR/RADARSAT-1/SRTM DEM-TPI) combined with ground truthing for mapping wetlands in Huascarán National Park, Peru. We mapped bofedales into major wetland types: 1) cushion plant peatlands, 2) cushion plant wet meadows, and 3) graminoid wet meadows with an overall accuracy of 92%. A fourth wetland type was found (graminoid peatlands) but was too rare to map accurately, thus it was combined with cushion peatland to form a single peatland class. Total wetland area mapped in the National Park is 38,444 ha, which is 11% of the park area. Peatlands were the most abundant wetland type occupying 6.3% of the park, followed by graminoid wet meadows (3.5%) and cushion wet meadows (1.3%). These maps will serve as the foundation for improved management, including restoration, and estimates of landscape carbon stocks
    corecore