239 research outputs found

    An adaptive pseudospectral method for discontinuous problems

    Get PDF
    The accuracy of adaptively chosen, mapped polynomial approximations is studied for functions with steep gradients or discontinuities. It is shown that, for steep gradient functions, one can obtain spectral accuracy in the original coordinate system by using polynomial approximations in a transformed coordinate system with substantially fewer collocation points than are necessary using polynomial expansion directly in the original, physical, coordinate system. It is also shown that one can avoid the usual Gibbs oscillation associated with steep gradient solutions of hyperbolic pde's by approximation in suitably chosen coordinate systems. Continuous, high gradient solutions are computed with spectral accuracy (as measured in the physical coordinate system). Discontinuous solutions associated with nonlinear hyperbolic equations can be accurately computed by using an artificial viscosity chosen to smooth out the solution in the mapped, computational domain. Thus, shocks can be effectively resolved on a scale that is subgrid to the resolution available with collocation only in the physical domain. Examples with Fourier and Chebyshev collocation are given

    Introducing PHAEDRA: a new spectral code for simulations of relativistic magnetospheres

    Full text link
    We describe a new scheme for evolving the equations of force-free electrodynamics, the vanishing-inertia limit of magnetohydrodynamics. This pseudospectral code uses global orthogonal basis function expansions to take accurate spatial derivatives, allowing the use of an unstaggered mesh and the complete force-free current density. The method has low numerical dissipation and diffusion outside of singular current sheets. We present a range of one- and two-dimensional tests, and demonstrate convergence to both smooth and discontinuous analytic solutions. As a first application, we revisit the aligned rotator problem, obtaining a steady solution with resistivity localised in the equatorial current sheet outside the light cylinder.Comment: 23 pages, 18 figures, accepted for publication in MNRA

    Spectral methods in fluid dynamics

    Get PDF
    Fundamental aspects of spectral methods are introduced. Recent developments in spectral methods are reviewed with an emphasis on collocation techniques. Their applications to both compressible and incompressible flows, to viscous as well as inviscid flows, and also to chemically reacting flows are surveyed. The key role that these methods play in the simulation of stability, transition, and turbulence is brought out. A perspective is provided on some of the obstacles that prohibit a wider use of these methods, and how these obstacles are being overcome

    Pseudospectral methods for density functional theory in bounded and unbounded domains

    Get PDF
    Classical Density Functional Theory (DFT) is a statistical-mechanical framework to analyze fluids, which accounts for nanoscale fluid inhomogeneities and non-local intermolecular interactions. DFT can be applied to a wide range of interfacial phenomena, as well as problems in adsorption, colloidal science and phase transitions in fluids. Typical DFT equations are highly non-linear, stiff and contain several convolution terms. We propose a novel, efficient pseudo-spectral collocation scheme for computing the non-local terms in real space with the help of a specialized Gauss quadrature. Due to the exponential accuracy of the quadrature and a convenient choice of collocation points near interfaces, we can use grids with a significantly lower number of nodes than most other reported methods. We demonstrate the capabilities of our numerical methodology by studying equilibrium and dynamic two-dimensional test cases with single- and multispecies hard-sphere and hard-disc particles modelled with fundamental measure theory, with and without van der Waals attractive forces, in bounded and unbounded physical domains. We show that our results satisfy statistical mechanical sum rules
    corecore