887 research outputs found

    Sparse distributed memory

    Get PDF
    Sparse distributed memory was proposed be Pentti Kanerva as a realizable architecture that could store large patterns and retrieve them based on partial matches with patterns representing current sensory inputs. This memory exhibits behaviors, both in theory and in experiment, that resemble those previously unapproached by machines - e.g., rapid recognition of faces or odors, discovery of new connections between seemingly unrelated ideas, continuation of a sequence of events when given a cue from the middle, knowing that one doesn't know, or getting stuck with an answer on the tip of one's tongue. These behaviors are now within reach of machines that can be incorporated into the computing systems of robots capable of seeing, talking, and manipulating. Kanerva's theory is a break with the Western rationalistic tradition, allowing a new interpretation of learning and cognition that respects biology and the mysteries of individual human beings

    High-Performance Computer Algebra: A Hecke Algebra Case Study

    Get PDF
    We describe the first ever parallelisation of an algebraic computation at modern HPC scale. Our case study poses challenges typical of the domain: it is a multi-phase application with dynamic task creation and irregular parallelism over complex control and data structures. Our starting point is a sequential algorithm for finding invariant bilinear forms in the representation theory of Hecke algebras, implemented in the GAP computational group theory system. After optimising the sequential code we develop a parallel algorithm that exploits the new skeleton-based SGP2 framework to parallelise the three most computationally-intensive phases. To this end we develop a new domain-specific skeleton, parBufferTryReduce. We report good parallel performance both on a commodity cluster and on a national HPC, delivering speedups up to 548 over the optimised sequential implementation on 1024 cores

    Distributed Maple: parallel computer algebra in networked environments

    Get PDF
    AbstractWe describe the design and use of Distributed Maple, an environment for executing parallel computer algebra programs on multiprocessors and heterogeneous clusters. The system embeds kernels of the computer algebra system Maple as computational engines into a networked coordination layer implemented in the programming language Java. On the basis of a comparatively high-level programming model, one may write parallel Maple programs that show good speedups in medium-scaled environments. We report on the use of the system for the parallelization of various functions of the algebraic geometry library CASA and demonstrate how design decisions affect the dynamic behaviour and performance of a parallel application. Numerous experimental results allow comparison of Distributed Maple with other systems for parallel computer algebra

    SAT Competition 2020

    Get PDF
    The SAT Competitions constitute a well-established series of yearly open international algorithm implementation competitions, focusing on the Boolean satisfiability (or propositional satisfiability, SAT) problem. In this article, we provide a detailed account on the 2020 instantiation of the SAT Competition, including the new competition tracks and benchmark selection procedures, overview of solving strategies implemented in top-performing solvers, and a detailed analysis of the empirical data obtained from running the competition

    SAT Competition 2020

    Get PDF
    The SAT Competitions constitute a well-established series of yearly open international algorithm implementation competitions, focusing on the Boolean satisfiability (or propositional satisfiability, SAT) problem. In this article, we provide a detailed account on the 2020 instantiation of the SAT Competition, including the new competition tracks and benchmark selection procedures, overview of solving strategies implemented in top-performing solvers, and a detailed analysis of the empirical data obtained from running the competition. (C) 2021 The Authors. Published by Elsevier B.V.Peer reviewe

    Proceedings of SAT Competition 2020 : Solver and Benchmark Descriptions

    Get PDF
    Non peer reviewe

    Grid-enabling problem solving environments: a case study of SCIRun and NetSolve

    Get PDF
    Journal ArticleCombining the functionality of NetSolve, a grid-based middleware solution, with SCIRun, a graphically-based problem solving environment (PSE), yields a platform for creating and executing grid-enabled applications. Using this integrated system, hardware and/or software resources not previously accessible to a user become available completely behind the scenes. Neither the SCIRun system nor the SCIRun user need to know any details about how these resources are located and utilized. A SCIRun module merely makes an RPC-style call to NetSolve via the NetSolve C language API to invoke a certain routine and to pass its data. Distributed computation and the details of remote communication are completely abstracted away from the SCIRun framework and its end user
    corecore