810 research outputs found

    MapReduce neural network framework for efficient content based image retrieval from large datasets in the cloud

    Get PDF
    Recently, content based image retrieval (CBIR) has gained active research focus due to wide applications such as crime prevention, medicine, historical research and digital libraries. With digital explosion, image collections in databases in distributed locations over the Internet pose a challenge to retrieve images that are relevant to user queries efficiently and accurately. It becomes increasingly important to develop new CBIR techniques that are effective and scalable for real-time processing of very large image collections. To address this, the paper proposes a novel MapReduce neural network framework for CBIR from large data collection in a cloud environment. We adopt natural language queries that use a fuzzy approach to classify the colour images based on their content and apply Map and Reduce functions that can operate in cloud clusters for arriving at accurate results in real-time. Preliminary experimental results for classifying and retrieving images from large data sets were quite convincing to carry out further experimental evaluations. © 2012 IEEE

    A Resource Aware MapReduce Based Parallel SVM for Large Scale Image Classifications

    Get PDF
    Machine learning techniques have facilitated image retrieval by automatically classifying and annotating images with keywords. Among them support vector machines (SVMs) are used extensively due to their generalization properties. However, SVM training is notably a computationally intensive process especially when the training dataset is large. This paper presents RASMO, a resource aware MapReduce based parallel SVM algorithm for large scale image classifications which partitions the training data set into smaller subsets and optimizes SVM training in parallel using a cluster of computers. A genetic algorithm based load balancing scheme is designed to optimize the performance of RASMO in heterogeneous computing environments. RASMO is evaluated in both experimental and simulation environments. The results show that the parallel SVM algorithm reduces the training time significantly compared with the sequential SMO algorithm while maintaining a high level of accuracy in classifications.National Basic Research Program (973) of China under Grant 2014CB34040

    Scalable Privacy-Compliant Virality Prediction on Twitter

    Get PDF
    The digital town hall of Twitter becomes a preferred medium of communication for individuals and organizations across the globe. Some of them reach audiences of millions, while others struggle to get noticed. Given the impact of social media, the question remains more relevant than ever: how to model the dynamics of attention in Twitter. Researchers around the world turn to machine learning to predict the most influential tweets and authors, navigating the volume, velocity, and variety of social big data, with many compromises. In this paper, we revisit content popularity prediction on Twitter. We argue that strict alignment of data acquisition, storage and analysis algorithms is necessary to avoid the common trade-offs between scalability, accuracy and privacy compliance. We propose a new framework for the rapid acquisition of large-scale datasets, high accuracy supervisory signal and multilanguage sentiment prediction while respecting every privacy request applicable. We then apply a novel gradient boosting framework to achieve state-of-the-art results in virality ranking, already before including tweet's visual or propagation features. Our Gradient Boosted Regression Tree is the first to offer explainable, strong ranking performance on benchmark datasets. Since the analysis focused on features available early, the model is immediately applicable to incoming tweets in 18 languages.Comment: AffCon@AAAI-19 Best Paper Award; Presented at AAAI-19 W1: Affective Content Analysi
    • …
    corecore