17,172 research outputs found

    Constrained Optimization for a Subset of the Gaussian Parsimonious Clustering Models

    Full text link
    The expectation-maximization (EM) algorithm is an iterative method for finding maximum likelihood estimates when data are incomplete or are treated as being incomplete. The EM algorithm and its variants are commonly used for parameter estimation in applications of mixture models for clustering and classification. This despite the fact that even the Gaussian mixture model likelihood surface contains many local maxima and is singularity riddled. Previous work has focused on circumventing this problem by constraining the smallest eigenvalue of the component covariance matrices. In this paper, we consider constraining the smallest eigenvalue, the largest eigenvalue, and both the smallest and largest within the family setting. Specifically, a subset of the GPCM family is considered for model-based clustering, where we use a re-parameterized version of the famous eigenvalue decomposition of the component covariance matrices. Our approach is illustrated using various experiments with simulated and real data

    A robust approach to model-based classification based on trimming and constraints

    Full text link
    In a standard classification framework a set of trustworthy learning data are employed to build a decision rule, with the final aim of classifying unlabelled units belonging to the test set. Therefore, unreliable labelled observations, namely outliers and data with incorrect labels, can strongly undermine the classifier performance, especially if the training size is small. The present work introduces a robust modification to the Model-Based Classification framework, employing impartial trimming and constraints on the ratio between the maximum and the minimum eigenvalue of the group scatter matrices. The proposed method effectively handles noise presence in both response and exploratory variables, providing reliable classification even when dealing with contaminated datasets. A robust information criterion is proposed for model selection. Experiments on real and simulated data, artificially adulterated, are provided to underline the benefits of the proposed method

    Arriving on time: estimating travel time distributions on large-scale road networks

    Full text link
    Most optimal routing problems focus on minimizing travel time or distance traveled. Oftentimes, a more useful objective is to maximize the probability of on-time arrival, which requires statistical distributions of travel times, rather than just mean values. We propose a method to estimate travel time distributions on large-scale road networks, using probe vehicle data collected from GPS. We present a framework that works with large input of data, and scales linearly with the size of the network. Leveraging the planar topology of the graph, the method computes efficiently the time correlations between neighboring streets. First, raw probe vehicle traces are compressed into pairs of travel times and number of stops for each traversed road segment using a `stop-and-go' algorithm developed for this work. The compressed data is then used as input for training a path travel time model, which couples a Markov model along with a Gaussian Markov random field. Finally, scalable inference algorithms are developed for obtaining path travel time distributions from the composite MM-GMRF model. We illustrate the accuracy and scalability of our model on a 505,000 road link network spanning the San Francisco Bay Area
    corecore