105 research outputs found

    Variational methods and its applications to computer vision

    Get PDF
    Many computer vision applications such as image segmentation can be formulated in a ''variational'' way as energy minimization problems. Unfortunately, the computational task of minimizing these energies is usually difficult as it generally involves non convex functions in a space with thousands of dimensions and often the associated combinatorial problems are NP-hard to solve. Furthermore, they are ill-posed inverse problems and therefore are extremely sensitive to perturbations (e.g. noise). For this reason in order to compute a physically reliable approximation from given noisy data, it is necessary to incorporate into the mathematical model appropriate regularizations that require complex computations. The main aim of this work is to describe variational segmentation methods that are particularly effective for curvilinear structures. Due to their complex geometry, classical regularization techniques cannot be adopted because they lead to the loss of most of low contrasted details. In contrast, the proposed method not only better preserves curvilinear structures, but also reconnects some parts that may have been disconnected by noise. Moreover, it can be easily extensible to graphs and successfully applied to different types of data such as medical imagery (i.e. vessels, hearth coronaries etc), material samples (i.e. concrete) and satellite signals (i.e. streets, rivers etc.). In particular, we will show results and performances about an implementation targeting new generation of High Performance Computing (HPC) architectures where different types of coprocessors cooperate. The involved dataset consists of approximately 200 images of cracks, captured in three different tunnels by a robotic machine designed for the European ROBO-SPECT project.Open Acces

    Embedded SLAM algorithm based on ORB-SLAM2

    Get PDF
    The goal of this dissertation was to present a comprehensive analysis of the ORB-SLAM2 algorithm. By introducing the basis of points triangulation and ORB features, the whole structure of the algorithm has been analyzed, with a centralized focus on the graph-based optimization involved, as well as the place recognition mechanism. Additionally, the original code has been analyzed and optimized, resulting in a substantial increase in time performance while keeping a similar accuracy to the original one, proved by several simulations performed. The final goal of this thesis has been the testing of the obtained algorithm on a real quadcopter and the analysis of its outcomes: the results were affected by the limited computational resources available in the vehicle, obtaining a lower accuracy with respect to the simulation, but still proving the efficiency of the improvements applied on the original code

    Automatic video segmentation employing object/camera modeling techniques

    Get PDF
    Practically established video compression and storage techniques still process video sequences as rectangular images without further semantic structure. However, humans watching a video sequence immediately recognize acting objects as semantic units. This semantic object separation is currently not reflected in the technical system, making it difficult to manipulate the video at the object level. The realization of object-based manipulation will introduce many new possibilities for working with videos like composing new scenes from pre-existing video objects or enabling user-interaction with the scene. Moreover, object-based video compression, as defined in the MPEG-4 standard, can provide high compression ratios because the foreground objects can be sent independently from the background. In the case that the scene background is static, the background views can even be combined into a large panoramic sprite image, from which the current camera view is extracted. This results in a higher compression ratio since the sprite image for each scene only has to be sent once. A prerequisite for employing object-based video processing is automatic (or at least user-assisted semi-automatic) segmentation of the input video into semantic units, the video objects. This segmentation is a difficult problem because the computer does not have the vast amount of pre-knowledge that humans subconsciously use for object detection. Thus, even the simple definition of the desired output of a segmentation system is difficult. The subject of this thesis is to provide algorithms for segmentation that are applicable to common video material and that are computationally efficient. The thesis is conceptually separated into three parts. In Part I, an automatic segmentation system for general video content is described in detail. Part II introduces object models as a tool to incorporate userdefined knowledge about the objects to be extracted into the segmentation process. Part III concentrates on the modeling of camera motion in order to relate the observed camera motion to real-world camera parameters. The segmentation system that is described in Part I is based on a background-subtraction technique. The pure background image that is required for this technique is synthesized from the input video itself. Sequences that contain rotational camera motion can also be processed since the camera motion is estimated and the input images are aligned into a panoramic scene-background. This approach is fully compatible to the MPEG-4 video-encoding framework, such that the segmentation system can be easily combined with an object-based MPEG-4 video codec. After an introduction to the theory of projective geometry in Chapter 2, which is required for the derivation of camera-motion models, the estimation of camera motion is discussed in Chapters 3 and 4. It is important that the camera-motion estimation is not influenced by foreground object motion. At the same time, the estimation should provide accurate motion parameters such that all input frames can be combined seamlessly into a background image. The core motion estimation is based on a feature-based approach where the motion parameters are determined with a robust-estimation algorithm (RANSAC) in order to distinguish the camera motion from simultaneously visible object motion. Our experiments showed that the robustness of the original RANSAC algorithm in practice does not reach the theoretically predicted performance. An analysis of the problem has revealed that this is caused by numerical instabilities that can be significantly reduced by a modification that we describe in Chapter 4. The synthetization of static-background images is discussed in Chapter 5. In particular, we present a new algorithm for the removal of the foreground objects from the background image such that a pure scene background remains. The proposed algorithm is optimized to synthesize the background even for difficult scenes in which the background is only visible for short periods of time. The problem is solved by clustering the image content for each region over time, such that each cluster comprises static content. Furthermore, it is exploited that the times, in which foreground objects appear in an image region, are similar to the corresponding times of neighboring image areas. The reconstructed background could be used directly as the sprite image in an MPEG-4 video coder. However, we have discovered that the counterintuitive approach of splitting the background into several independent parts can reduce the overall amount of data. In the case of general camera motion, the construction of a single sprite image is even impossible. In Chapter 6, a multi-sprite partitioning algorithm is presented, which separates the video sequence into a number of segments, for which independent sprites are synthesized. The partitioning is computed in such a way that the total area of the resulting sprites is minimized, while simultaneously satisfying additional constraints. These include a limited sprite-buffer size at the decoder, and the restriction that the image resolution in the sprite should never fall below the input-image resolution. The described multisprite approach is fully compatible to the MPEG-4 standard, but provides three advantages. First, any arbitrary rotational camera motion can be processed. Second, the coding-cost for transmitting the sprite images is lower, and finally, the quality of the decoded sprite images is better than in previously proposed sprite-generation algorithms. Segmentation masks for the foreground objects are computed with a change-detection algorithm that compares the pure background image with the input images. A special effect that occurs in the change detection is the problem of image misregistration. Since the change detection compares co-located image pixels in the camera-motion compensated images, a small error in the motion estimation can introduce segmentation errors because non-corresponding pixels are compared. We approach this problem in Chapter 7 by integrating risk-maps into the segmentation algorithm that identify pixels for which misregistration would probably result in errors. For these image areas, the change-detection algorithm is modified to disregard the difference values for the pixels marked in the risk-map. This modification significantly reduces the number of false object detections in fine-textured image areas. The algorithmic building-blocks described above can be combined into a segmentation system in various ways, depending on whether camera motion has to be considered or whether real-time execution is required. These different systems and example applications are discussed in Chapter 8. Part II of the thesis extends the described segmentation system to consider object models in the analysis. Object models allow the user to specify which objects should be extracted from the video. In Chapters 9 and 10, a graph-based object model is presented in which the features of the main object regions are summarized in the graph nodes, and the spatial relations between these regions are expressed with the graph edges. The segmentation algorithm is extended by an object-detection algorithm that searches the input image for the user-defined object model. We provide two objectdetection algorithms. The first one is specific for cartoon sequences and uses an efficient sub-graph matching algorithm, whereas the second processes natural video sequences. With the object-model extension, the segmentation system can be controlled to extract individual objects, even if the input sequence comprises many objects. Chapter 11 proposes an alternative approach to incorporate object models into a segmentation algorithm. The chapter describes a semi-automatic segmentation algorithm, in which the user coarsely marks the object and the computer refines this to the exact object boundary. Afterwards, the object is tracked automatically through the sequence. In this algorithm, the object model is defined as the texture along the object contour. This texture is extracted in the first frame and then used during the object tracking to localize the original object. The core of the algorithm uses a graph representation of the image and a newly developed algorithm for computing shortest circular-paths in planar graphs. The proposed algorithm is faster than the currently known algorithms for this problem, and it can also be applied to many alternative problems like shape matching. Part III of the thesis elaborates on different techniques to derive information about the physical 3-D world from the camera motion. In the segmentation system, we employ camera-motion estimation, but the obtained parameters have no direct physical meaning. Chapter 12 discusses an extension to the camera-motion estimation to factorize the motion parameters into physically meaningful parameters (rotation angles, focal-length) using camera autocalibration techniques. The speciality of the algorithm is that it can process camera motion that spans several sprites by employing the above multi-sprite technique. Consequently, the algorithm can be applied to arbitrary rotational camera motion. For the analysis of video sequences, it is often required to determine and follow the position of the objects. Clearly, the object position in image coordinates provides little information if the viewing direction of the camera is not known. Chapter 13 provides a new algorithm to deduce the transformation between the image coordinates and the real-world coordinates for the special application of sport-video analysis. In sport videos, the camera view can be derived from markings on the playing field. For this reason, we employ a model of the playing field that describes the arrangement of lines. After detecting significant lines in the input image, a combinatorial search is carried out to establish correspondences between lines in the input image and lines in the model. The algorithm requires no information about the specific color of the playing field and it is very robust to occlusions or poor lighting conditions. Moreover, the algorithm is generic in the sense that it can be applied to any type of sport by simply exchanging the model of the playing field. In Chapter 14, we again consider panoramic background images and particularly focus ib their visualization. Apart from the planar backgroundsprites discussed previously, a frequently-used visualization technique for panoramic images are projections onto a cylinder surface which is unwrapped into a rectangular image. However, the disadvantage of this approach is that the viewer has no good orientation in the panoramic image because he looks into all directions at the same time. In order to provide a more intuitive presentation of wide-angle views, we have developed a visualization technique specialized for the case of indoor environments. We present an algorithm to determine the 3-D shape of the room in which the image was captured, or, more generally, to compute a complete floor plan if several panoramic images captured in each of the rooms are provided. Based on the obtained 3-D geometry, a graphical model of the rooms is constructed, where the walls are displayed with textures that are extracted from the panoramic images. This representation enables to conduct virtual walk-throughs in the reconstructed room and therefore, provides a better orientation for the user. Summarizing, we can conclude that all segmentation techniques employ some definition of foreground objects. These definitions are either explicit, using object models like in Part II of this thesis, or they are implicitly defined like in the background synthetization in Part I. The results of this thesis show that implicit descriptions, which extract their definition from video content, work well when the sequence is long enough to extract this information reliably. However, high-level semantics are difficult to integrate into the segmentation approaches that are based on implicit models. Intead, those semantics should be added as postprocessing steps. On the other hand, explicit object models apply semantic pre-knowledge at early stages of the segmentation. Moreover, they can be applied to short video sequences or even still pictures since no background model has to be extracted from the video. The definition of a general object-modeling technique that is widely applicable and that also enables an accurate segmentation remains an important yet challenging problem for further research

    Marker-less motion capture in general scenes with sparse multi-camera setups

    Get PDF
    Human motion-capture from videos is one of the fundamental problems in computer vision and computer graphics. Its applications can be found in a wide range of industries. Even with all the developments in the past years, industry and academia alike still rely on complex and expensive marker-based systems. Many state-of-the-art marker-less motioncapture methods come close to the performance of marker-based algorithms, but only when recording in highly controlled studio environments with exactly synchronized, static and sufficiently many cameras. While relative to marker-based systems, this yields an easier apparatus with a reduced setup time, the hurdles towards practical application are still large and the costs are considerable. By being constrained to a controlled studio, marker-less methods fail to fully play out their advantage of being able to capture scenes without actively modifying them. In the area of marker-less human motion-capture, this thesis proposes several novel algorithms for simplifying the motion-capture to be applicable in new general outdoor scenes. The first is an optical multi-video synchronization method which achieves subframe accuracy in general scenes. In this step, the synchronization parameters of multiple videos are estimated. Then, we propose a spatio-temporal motion-capture method which uses the synchronization parameters for accurate motion-capture with unsynchronized cameras. Afterwards, we propose a motion capture method that works with moving cameras, where multiple people are tracked even in front of cluttered and dynamic backgrounds with potentially moving cameras. Finally, we reduce the number of cameras employed by proposing a novel motion-capture method which uses as few as two cameras to capture high-quality motion in general environments, even outdoors. The methods proposed in this thesis can be adopted in many practical applications to achieve similar performance as complex motion-capture studios with a few consumer-grade cameras, such as mobile phones or GoPros, even for uncontrolled outdoor scenes.Die videobasierte Bewegungserfassung (Motion Capture) menschlicher Darsteller ist ein fundamentales Problem in Computer Vision und Computergrafik, das in einer Vielzahl von Branchen Anwendung findet. Trotz des Fortschritts der letzten Jahre verlassen sich Wirtschaft und Wissenschaft noch immer auf komplexe und teure markerbasierte Systeme. Viele aktuelle markerlose Motion-Capture-Verfahren kommen der Leistung von markerbasierten Algorithmen nahe, aber nur bei Aufnahmen in stark kontrollierten Studio-Umgebungen mit genügend genau synchronisierten, statischen Kameras. Im Vergleich zu markerbasierten Systemen wird der Aufbau erheblich vereinfacht, was Zeit beim Aufbau spart, aber die Hürden für die praktische Anwendung sind noch immer groß und die Kosten beträchtlich. Durch die Beschränkung auf ein kontrolliertes Studio können markerlose Verfahren nicht vollständig ihren Vorteil ausspielen, Szenen aufzunehmen zu können, ohne sie aktiv zu verändern. Diese Arbeit schlägt mehrere neuartige markerlose Motion-Capture-Verfahren vor, welche die Erfassung menschlicher Darsteller in allgemeinen Außenaufnahmen vereinfachen. Das erste ist ein optisches Videosynchronisierungsverfahren, welches die Synchronisationsparameter mehrerer Videos genauer als die Bildwiederholrate schätzt. Anschließend wird ein Raum-Zeit-Motion-Capture-Verfahren vorgeschlagen, welches die Synchronisationsparameter für präzises Motion Capture mit nicht synchronisierten Kameras verwendet. Außerdem wird ein Motion-Capture-Verfahren für bewegliche Kameras vorgestellt, das mehrere Menschen auch vor unübersichtlichen und dynamischen Hintergründen erfasst. Schließlich wird die Anzahl der erforderlichen Kameras durch ein neues MotionCapture-Verfahren, auf lediglich zwei Kameras reduziert, um Bewegungen qualitativ hochwertig auch in allgemeinen Umgebungen wie im Freien zu erfassen. Die in dieser Arbeit vorgeschlagenen Verfahren können in viele praktische Anwendungen übernommen werden, um eine ähnliche Leistung wie komplexe Motion-Capture-Studios mit lediglich einigen Videokameras der Verbraucherklasse, zum Beispiel Mobiltelefonen oder GoPros, auch in unkontrollierten Außenaufnahmen zu erzielen

    Marker-less motion capture in general scenes with sparse multi-camera setups

    Get PDF
    Human motion-capture from videos is one of the fundamental problems in computer vision and computer graphics. Its applications can be found in a wide range of industries. Even with all the developments in the past years, industry and academia alike still rely on complex and expensive marker-based systems. Many state-of-the-art marker-less motioncapture methods come close to the performance of marker-based algorithms, but only when recording in highly controlled studio environments with exactly synchronized, static and sufficiently many cameras. While relative to marker-based systems, this yields an easier apparatus with a reduced setup time, the hurdles towards practical application are still large and the costs are considerable. By being constrained to a controlled studio, marker-less methods fail to fully play out their advantage of being able to capture scenes without actively modifying them. In the area of marker-less human motion-capture, this thesis proposes several novel algorithms for simplifying the motion-capture to be applicable in new general outdoor scenes. The first is an optical multi-video synchronization method which achieves subframe accuracy in general scenes. In this step, the synchronization parameters of multiple videos are estimated. Then, we propose a spatio-temporal motion-capture method which uses the synchronization parameters for accurate motion-capture with unsynchronized cameras. Afterwards, we propose a motion capture method that works with moving cameras, where multiple people are tracked even in front of cluttered and dynamic backgrounds with potentially moving cameras. Finally, we reduce the number of cameras employed by proposing a novel motion-capture method which uses as few as two cameras to capture high-quality motion in general environments, even outdoors. The methods proposed in this thesis can be adopted in many practical applications to achieve similar performance as complex motion-capture studios with a few consumer-grade cameras, such as mobile phones or GoPros, even for uncontrolled outdoor scenes.Die videobasierte Bewegungserfassung (Motion Capture) menschlicher Darsteller ist ein fundamentales Problem in Computer Vision und Computergrafik, das in einer Vielzahl von Branchen Anwendung findet. Trotz des Fortschritts der letzten Jahre verlassen sich Wirtschaft und Wissenschaft noch immer auf komplexe und teure markerbasierte Systeme. Viele aktuelle markerlose Motion-Capture-Verfahren kommen der Leistung von markerbasierten Algorithmen nahe, aber nur bei Aufnahmen in stark kontrollierten Studio-Umgebungen mit genügend genau synchronisierten, statischen Kameras. Im Vergleich zu markerbasierten Systemen wird der Aufbau erheblich vereinfacht, was Zeit beim Aufbau spart, aber die Hürden für die praktische Anwendung sind noch immer groß und die Kosten beträchtlich. Durch die Beschränkung auf ein kontrolliertes Studio können markerlose Verfahren nicht vollständig ihren Vorteil ausspielen, Szenen aufzunehmen zu können, ohne sie aktiv zu verändern. Diese Arbeit schlägt mehrere neuartige markerlose Motion-Capture-Verfahren vor, welche die Erfassung menschlicher Darsteller in allgemeinen Außenaufnahmen vereinfachen. Das erste ist ein optisches Videosynchronisierungsverfahren, welches die Synchronisationsparameter mehrerer Videos genauer als die Bildwiederholrate schätzt. Anschließend wird ein Raum-Zeit-Motion-Capture-Verfahren vorgeschlagen, welches die Synchronisationsparameter für präzises Motion Capture mit nicht synchronisierten Kameras verwendet. Außerdem wird ein Motion-Capture-Verfahren für bewegliche Kameras vorgestellt, das mehrere Menschen auch vor unübersichtlichen und dynamischen Hintergründen erfasst. Schließlich wird die Anzahl der erforderlichen Kameras durch ein neues MotionCapture-Verfahren, auf lediglich zwei Kameras reduziert, um Bewegungen qualitativ hochwertig auch in allgemeinen Umgebungen wie im Freien zu erfassen. Die in dieser Arbeit vorgeschlagenen Verfahren können in viele praktische Anwendungen übernommen werden, um eine ähnliche Leistung wie komplexe Motion-Capture-Studios mit lediglich einigen Videokameras der Verbraucherklasse, zum Beispiel Mobiltelefonen oder GoPros, auch in unkontrollierten Außenaufnahmen zu erzielen

    Robust and affordable localization and mapping for 3D reconstruction. Application to architecture and construction

    Get PDF
    La localización y mapeado simultáneo a partir de una sola cámara en movimiento se conoce como Monocular SLAM. En esta tesis se aborda este problema con cámaras de bajo coste cuyo principal reto consiste en ser robustos al ruido, blurring y otros artefactos que afectan a la imagen. La aproximación al problema es discreta, utilizando solo puntos de la imagen significativos para localizar la cámara y mapear el entorno. La principal contribución es una simplificación del grafo de poses que permite mejorar la precisión en las escenas más habituales, evaluada de forma exhaustiva en 4 datasets. Los resultados del mapeado permiten obtener una reconstrucción 3D de la escena que puede ser utilizada en arquitectura y construcción para Modelar la Información del Edificio (BIM). En la segunda parte de la tesis proponemos incorporar dicha información en un sistema de visualización avanzada usando WebGL que ayude a simplificar la implantación de la metodología BIM.Departamento de Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia Artificial, Lenguajes y Sistemas Informáticos)Doctorado en Informátic

    Graph-based segmentation and scene understanding for context-free point clouds

    Get PDF
    The acquisition of 3D point clouds representing the surface structure of real-world scenes has become common practice in many areas including architecture, cultural heritage and urban planning. Improvements in sample acquisition rates and precision are contributing to an increase in size and quality of point cloud data. The management of these large volumes of data is quickly becoming a challenge, leading to the design of algorithms intended to analyse and decrease the complexity of this data. Point cloud segmentation algorithms partition point clouds for better management, and scene understanding algorithms identify the components of a scene in the presence of considerable clutter and noise. In many cases, segmentation algorithms operate within the remit of a specific context, wherein their effectiveness is measured. Similarly, scene understanding algorithms depend on specific scene properties and fail to identify objects in a number of situations. This work addresses this lack of generality in current segmentation and scene understanding processes, and proposes methods for point clouds acquired using diverse scanning technologies in a wide spectrum of contexts. The approach to segmentation proposed by this work partitions a point cloud with minimal information, abstracting the data into a set of connected segment primitives to support efficient manipulation. A graph-based query mechanism is used to express further relations between segments and provide the building blocks for scene understanding. The presented method for scene understanding is agnostic of scene specific context and supports both supervised and unsupervised approaches. In the former, a graph-based object descriptor is derived from a training process and used in object identification. The latter approach applies pattern matching to identify regular structures. A novel external memory algorithm based on a hybrid spatial subdivision technique is introduced to handle very large point clouds and accelerate the computation of the k-nearest neighbour function. Segmentation has been successfully applied to extract segments representing geographic landmarks and architectural features from a variety of point clouds, whereas scene understanding has been successfully applied to indoor scenes on which other methods fail. The overall results demonstrate that the context-agnostic methods presented in this work can be successfully employed to manage the complexity of ever growing repositories
    corecore