1,101 research outputs found

    Implementation of INSPIRE Schema Transformation Service

    Get PDF
    This paper studies three different approaches for the implementation of INSPIRE Schema Transformation Service. The first approach uses a WPS application for serving a custom-built transformer application that uses a custom-built schema mapping language for defining the transformations. It performs the schema transformations on-the-fly and it is implemented as an individual service. The other two approaches are based on different versions of the deegree WFS application and they use custom XSLT scripts for executing the schema transformations. One of these approaches is incorporated inside a Download Service and it performs the transformations on-the-fly, whereas the other approach relies on off-line transformations and works as a Download Service that serves the pre-transformed data

    Geospatial Data Management Research: Progress and Future Directions

    Get PDF
    Without geospatial data management, today®s challenges in big data applications such as earth observation, geographic information system/building information modeling (GIS/BIM) integration, and 3D/4D city planning cannot be solved. Furthermore, geospatial data management plays a connecting role between data acquisition, data modelling, data visualization, and data analysis. It enables the continuous availability of geospatial data and the replicability of geospatial data analysis. In the first part of this article, five milestones of geospatial data management research are presented that were achieved during the last decade. The first one reflects advancements in BIM/GIS integration at data, process, and application levels. The second milestone presents theoretical progress by introducing topology as a key concept of geospatial data management. In the third milestone, 3D/4D geospatial data management is described as a key concept for city modelling, including subsurface models. Progress in modelling and visualization of massive geospatial features on web platforms is the fourth milestone which includes discrete global grid systems as an alternative geospatial reference framework. The intensive use of geosensor data sources is the fifth milestone which opens the way to parallel data storage platforms supporting data analysis on geosensors. In the second part of this article, five future directions of geospatial data management research are presented that have the potential to become key research fields of geospatial data management in the next decade. Geo-data science will have the task to extract knowledge from unstructured and structured geospatial data and to bridge the gap between modern information technology concepts and the geo-related sciences. Topology is presented as a powerful and general concept to analyze GIS and BIM data structures and spatial relations that will be of great importance in emerging applications such as smart cities and digital twins. Data-streaming libraries and “in-situ” geo-computing on objects executed directly on the sensors will revolutionize geo-information science and bridge geo-computing with geospatial data management. Advanced geospatial data visualization on web platforms will enable the representation of dynamically changing geospatial features or moving objects’ trajectories. Finally, geospatial data management will support big geospatial data analysis, and graph databases are expected to experience a revival on top of parallel and distributed data stores supporting big geospatial data analysis

    Geospatial data harmonization from regional level to european level: a usa case in forest fire data

    Get PDF
    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.Geospatial data harmonization is becoming more and more important to increase interoperability of heterogeneous data derived from various sources in spatial data infrastructures. To address this harmonization issue we present the current status of data availability among different communities, languages, and administrative scales from regional to national and European levels. With a use case in forest data models in Europe, interoperability of burned area data derived from Europe and Valencia Community in Spain were tested and analyzed on the syntactic, schematic and semantic level. We suggest approaches for achieving a higher chance of data interoperability to guide forest domain experts in forest fire analysis. For testing syntactic interoperability, a common platform in the context of formats and web services was examined. We found that establishing OGC standard web services in a combination with GIS software applications that support various formats and web services can increase the chance of achieving syntactic interoperability between multiple geospatial data derived from different sources. For testing schematic and semantic interoperability, the ontology-based schema mapping approach was taken to transform a regional data model to a European data model on the conceptual level. The Feature Manipulation Engine enabled various types of data transformation from source to target attributes to achieve schematic interoperability. Ontological modelling in Protégé helped identify a common concept between the source and target data models, especially in cases where matching attributes were not found at the schematic level. Establishment of the domain ontology was explored to reach common ground between application ontologies and achieve a higher level of semantic interoperability

    Fachlich erweiterbare 3D-Stadtmodelle – Management, Visualisierung und Interaktion

    Get PDF
    Domain-extendable semantic 3D city models are complex mappings and inventories of the urban environment which can be utilized as an integrative information backbone to facilitate a range of application fields like urban planning, environmental simulations, disaster management, and energy assessment. Today, more and more countries and cities worldwide are creating their own 3D city models based on the CityGML specification which is an international standard issued by the Open Geospatial Consortium (OGC) to provide an open data model and XML-based format for describing the relevant urban objects with regards to their 3D geometry, topology, semantics, and appearance. It especially provides a flexible and systematic extension mechanism called “Application Domain Extension (ADE)” which allows third parties to dynamically extend the existing CityGML definitions with additional information models from different application domains for representing the extended or newly introduced geographic object types within a common framework. However, due to the consequent large size and high model complexity, the practical utilization of country-wide CityGML datasets has posed a tremendous challenge regarding the setup of an extensive application system to support the efficient data storage, analysis, management, interaction, and visualization. These requirements have been partly solved by the existing free 3D geo-database solution called ‘3D City Database (3DCityDB)’ which offers a rich set of functionalities for dealing with standard CityGML data models, but lacked the support for CityGML ADEs. The key motivation of this thesis is to develop a reliable approach for extending the existing database solution to support the efficient management, visualization, and interaction of large geospatial data elements of arbitrary CityGML ADEs. Emphasis is first placed on answering the question of how to dynamically extend the relational database schema by parsing and interpreting the XML schema files of the ADE and dynamically create new database tables accordingly. Based on a comprehensive survey of the related work, a new graph-based framework has been proposed which uses typed and attributed graphs for semantically representing the object-oriented data models of CityGML ADEs and utilizes graph transformation systems to automatically generate compact table structures extending the 3DCityDB. The transformation process is performed by applying a series of fine-grained graph transformation rules which allow users to declaratively describe the complex mapping rules including the optimization concepts that are employed in the development of the 3DCityDB database schema. The second major contribution of this thesis is the development of a new multi-level system which can serve as a complete and integrative platform for facilitating the various analysis, simulation, and modification operations on the complex-structured 3D city models based on CityGML and 3DCityDB. It introduces an additional application level based on a so-called ‘app-concept’ that allows for constructing a light-weight web application to reach a good balance between the high data model complexity and the specific application requirements of the end users. Each application can be easily built on top of a developed 3D web client whose functionalities go beyond the efficient 3D geo-visualization and interactive exploration, and also allows for performing collaborative modifications and analysis of 3D city models by taking advantage of the Cloud Computing technology. This multi-level system along with the extended 3DCityDB have been successfully utilized and evaluated by many practical projects.Fachlich erweiterbare semantische 3D-Stadtmodelle sind komplexe Abbildungen und DatenbestĂ€nde der stĂ€dtischen Umgebung, die als ein integratives InformationsrĂŒckgrat genutzt werden können, um eine Reihe von Anwendungsfeldern wie z. B. Stadtplanung, Umweltsimulationen, Katastrophenmanagement und Energiebewertung zu ermöglichen. Heute schaffen immer mehr LĂ€nder und StĂ€dte weltweit ihre eigenen 3D-Stadtmodelle auf Basis des internationalen Standards CityGML des Open Geospatial Consortium (OGC), um ein offenes Datenmodell und ein XML-basiertes Format zur Beschreibung der relevanten Stadtobjekte in Bezug auf ihre 3D-Geometrien, Topologien, Semantik und Erscheinungen zur VerfĂŒgung zu stellen. Es bietet insbesondere einen flexiblen und systematischen Erweiterungsmechanismus namens „Application Domain Extension“ (ADE), der es Dritten ermöglicht, die bestehenden CityGML-Definitionen mit zusĂ€tzlichen Informationsmodellen aus verschiedenen AnwendungsdomĂ€nen dynamisch zu erweitern, um die erweiterten oder neu eingefĂŒhrten Stadtobjekt-Typen innerhalb eines gemeinsamen Framework zu reprĂ€sentieren. Aufgrund der konsequent großen Datenmenge und hohen ModellkomplexitĂ€t bei der praktischen Nutzung der landesweiten CityGML-DatensĂ€tze wurden jedoch enorme Anforderungen an den Aufbau eines umfangreichen Anwendungssystems zur UnterstĂŒtzung der effizienten Speicherung, Analyse, Verwaltung, Interaktion und Visualisierung der Daten gestellt. Die bestehende kostenlose 3D-Geodatenbank-Lösung „3D City Database“ (3DCityDB) entsprach bereits teilweise diesen Anforderungen, indem sie zwar eine umfangreiche FunktionalitĂ€t fĂŒr den Umgang mit den Standard-CityGML-Datenmodellen, jedoch keine UnterstĂŒtzung fĂŒr CityGML-ADEs bietet. Die SchlĂŒsselmotivation fĂŒr diese Arbeit ist es, einen zuverlĂ€ssigen Ansatz zur Erweiterung der bestehenden Datenbanklösung zu entwickeln, um das effiziente Management, die Visualisierung und Interaktion großer DatensĂ€tze beliebiger CityGML-ADEs zu unterstĂŒtzen. Der Schwerpunkt liegt zunĂ€chst auf der Beantwortung der SchlĂŒsselfrage, wie man das relationale Datenbankschema dynamisch erweitern kann, indem die XML-Schemadateien der ADE analysiert und interpretiert und anschließend dem entsprechende neue Datenbanktabellen erzeugt werden. Auf Grundlage einer umfassenden Studie verwandter Arbeiten wurde ein neues graphbasiertes Framework entwickelt, das die typisierten und attributierten Graphen zur semantischen Darstellung der objektorientierten Datenmodelle von CityGML-ADEs verwendet und anschließend Graphersetzungssysteme nutzt, um eine kompakte Tabellenstruktur zur Erweiterung der 3DCityDB zu generieren. Der Transformationsprozess wird durch die Anwendung einer Reihe feingranularer Graphersetzungsregeln durchgefĂŒhrt, die es Benutzern ermöglicht, die komplexen Mapping-Regeln einschließlich der Optimierungskonzepte aus der Entwicklung des 3DCityDB-Datenbankschemas deklarativ zu formalisieren. Der zweite wesentliche Beitrag dieser Arbeit ist die Entwicklung eines neuen mehrstufigen Systemkonzepts, das auf CityGML und 3DCityDB basiert und gleichzeitig als eine komplette und integrative Plattform zur Erleichterung der Analyse, Simulationen und Modifikationen der komplex strukturierten 3D-Stadtmodelle dienen kann. Das Systemkonzept enthĂ€lt eine zusĂ€tzliche Anwendungsebene, die auf einem sogenannten „App-Konzept“ basiert, das es ermöglicht, eine leichtgewichtige Applikation bereitzustellen, die eine gute Balance zwischen der hohen ModellkomplexitĂ€t und den spezifischen Anwendungsanforderungen der Endbenutzer erreicht. Jede Applikation lĂ€sst sich ganz einfach mittels eines bereits entwickelten 3D-Webclients aufbauen, dessen FunktionalitĂ€ten ĂŒber die effiziente 3D-Geo-Visualisierung und interaktive Exploration hinausgehen und auch die DurchfĂŒhrung kollaborativer Modifikationen und Analysen von 3D-Stadtmodellen mit Hilfe von der Cloud-Computing-Technologie ermöglichen. Dieses mehrstufige System zusammen mit dem erweiterten 3DCityDB wurde erfolgreich in vielen praktischen Projekten genutzt und bewertet

    Fachlich erweiterbare 3D-Stadtmodelle – Management, Visualisierung und Interaktion

    Get PDF
    Domain-extendable semantic 3D city models are complex mappings and inventories of the urban environment which can be utilized as an integrative information backbone to facilitate a range of application fields like urban planning, environmental simulations, disaster management, and energy assessment. Today, more and more countries and cities worldwide are creating their own 3D city models based on the CityGML specification which is an international standard issued by the Open Geospatial Consortium (OGC) to provide an open data model and XML-based format for describing the relevant urban objects with regards to their 3D geometry, topology, semantics, and appearance. It especially provides a flexible and systematic extension mechanism called “Application Domain Extension (ADE)” which allows third parties to dynamically extend the existing CityGML definitions with additional information models from different application domains for representing the extended or newly introduced geographic object types within a common framework. However, due to the consequent large size and high model complexity, the practical utilization of country-wide CityGML datasets has posed a tremendous challenge regarding the setup of an extensive application system to support the efficient data storage, analysis, management, interaction, and visualization. These requirements have been partly solved by the existing free 3D geo-database solution called ‘3D City Database (3DCityDB)’ which offers a rich set of functionalities for dealing with standard CityGML data models, but lacked the support for CityGML ADEs. The key motivation of this thesis is to develop a reliable approach for extending the existing database solution to support the efficient management, visualization, and interaction of large geospatial data elements of arbitrary CityGML ADEs. Emphasis is first placed on answering the question of how to dynamically extend the relational database schema by parsing and interpreting the XML schema files of the ADE and dynamically create new database tables accordingly. Based on a comprehensive survey of the related work, a new graph-based framework has been proposed which uses typed and attributed graphs for semantically representing the object-oriented data models of CityGML ADEs and utilizes graph transformation systems to automatically generate compact table structures extending the 3DCityDB. The transformation process is performed by applying a series of fine-grained graph transformation rules which allow users to declaratively describe the complex mapping rules including the optimization concepts that are employed in the development of the 3DCityDB database schema. The second major contribution of this thesis is the development of a new multi-level system which can serve as a complete and integrative platform for facilitating the various analysis, simulation, and modification operations on the complex-structured 3D city models based on CityGML and 3DCityDB. It introduces an additional application level based on a so-called ‘app-concept’ that allows for constructing a light-weight web application to reach a good balance between the high data model complexity and the specific application requirements of the end users. Each application can be easily built on top of a developed 3D web client whose functionalities go beyond the efficient 3D geo-visualization and interactive exploration, and also allows for performing collaborative modifications and analysis of 3D city models by taking advantage of the Cloud Computing technology. This multi-level system along with the extended 3DCityDB have been successfully utilized and evaluated by many practical projects.Fachlich erweiterbare semantische 3D-Stadtmodelle sind komplexe Abbildungen und DatenbestĂ€nde der stĂ€dtischen Umgebung, die als ein integratives InformationsrĂŒckgrat genutzt werden können, um eine Reihe von Anwendungsfeldern wie z. B. Stadtplanung, Umweltsimulationen, Katastrophenmanagement und Energiebewertung zu ermöglichen. Heute schaffen immer mehr LĂ€nder und StĂ€dte weltweit ihre eigenen 3D-Stadtmodelle auf Basis des internationalen Standards CityGML des Open Geospatial Consortium (OGC), um ein offenes Datenmodell und ein XML-basiertes Format zur Beschreibung der relevanten Stadtobjekte in Bezug auf ihre 3D-Geometrien, Topologien, Semantik und Erscheinungen zur VerfĂŒgung zu stellen. Es bietet insbesondere einen flexiblen und systematischen Erweiterungsmechanismus namens „Application Domain Extension“ (ADE), der es Dritten ermöglicht, die bestehenden CityGML-Definitionen mit zusĂ€tzlichen Informationsmodellen aus verschiedenen AnwendungsdomĂ€nen dynamisch zu erweitern, um die erweiterten oder neu eingefĂŒhrten Stadtobjekt-Typen innerhalb eines gemeinsamen Framework zu reprĂ€sentieren. Aufgrund der konsequent großen Datenmenge und hohen ModellkomplexitĂ€t bei der praktischen Nutzung der landesweiten CityGML-DatensĂ€tze wurden jedoch enorme Anforderungen an den Aufbau eines umfangreichen Anwendungssystems zur UnterstĂŒtzung der effizienten Speicherung, Analyse, Verwaltung, Interaktion und Visualisierung der Daten gestellt. Die bestehende kostenlose 3D-Geodatenbank-Lösung „3D City Database“ (3DCityDB) entsprach bereits teilweise diesen Anforderungen, indem sie zwar eine umfangreiche FunktionalitĂ€t fĂŒr den Umgang mit den Standard-CityGML-Datenmodellen, jedoch keine UnterstĂŒtzung fĂŒr CityGML-ADEs bietet. Die SchlĂŒsselmotivation fĂŒr diese Arbeit ist es, einen zuverlĂ€ssigen Ansatz zur Erweiterung der bestehenden Datenbanklösung zu entwickeln, um das effiziente Management, die Visualisierung und Interaktion großer DatensĂ€tze beliebiger CityGML-ADEs zu unterstĂŒtzen. Der Schwerpunkt liegt zunĂ€chst auf der Beantwortung der SchlĂŒsselfrage, wie man das relationale Datenbankschema dynamisch erweitern kann, indem die XML-Schemadateien der ADE analysiert und interpretiert und anschließend dem entsprechende neue Datenbanktabellen erzeugt werden. Auf Grundlage einer umfassenden Studie verwandter Arbeiten wurde ein neues graphbasiertes Framework entwickelt, das die typisierten und attributierten Graphen zur semantischen Darstellung der objektorientierten Datenmodelle von CityGML-ADEs verwendet und anschließend Graphersetzungssysteme nutzt, um eine kompakte Tabellenstruktur zur Erweiterung der 3DCityDB zu generieren. Der Transformationsprozess wird durch die Anwendung einer Reihe feingranularer Graphersetzungsregeln durchgefĂŒhrt, die es Benutzern ermöglicht, die komplexen Mapping-Regeln einschließlich der Optimierungskonzepte aus der Entwicklung des 3DCityDB-Datenbankschemas deklarativ zu formalisieren. Der zweite wesentliche Beitrag dieser Arbeit ist die Entwicklung eines neuen mehrstufigen Systemkonzepts, das auf CityGML und 3DCityDB basiert und gleichzeitig als eine komplette und integrative Plattform zur Erleichterung der Analyse, Simulationen und Modifikationen der komplex strukturierten 3D-Stadtmodelle dienen kann. Das Systemkonzept enthĂ€lt eine zusĂ€tzliche Anwendungsebene, die auf einem sogenannten „App-Konzept“ basiert, das es ermöglicht, eine leichtgewichtige Applikation bereitzustellen, die eine gute Balance zwischen der hohen ModellkomplexitĂ€t und den spezifischen Anwendungsanforderungen der Endbenutzer erreicht. Jede Applikation lĂ€sst sich ganz einfach mittels eines bereits entwickelten 3D-Webclients aufbauen, dessen FunktionalitĂ€ten ĂŒber die effiziente 3D-Geo-Visualisierung und interaktive Exploration hinausgehen und auch die DurchfĂŒhrung kollaborativer Modifikationen und Analysen von 3D-Stadtmodellen mit Hilfe von der Cloud-Computing-Technologie ermöglichen. Dieses mehrstufige System zusammen mit dem erweiterten 3DCityDB wurde erfolgreich in vielen praktischen Projekten genutzt und bewertet

    Geospatial Information Research: State of the Art, Case Studies and Future Perspectives

    Get PDF
    Geospatial information science (GI science) is concerned with the development and application of geodetic and information science methods for modeling, acquiring, sharing, managing, exploring, analyzing, synthesizing, visualizing, and evaluating data on spatio-temporal phenomena related to the Earth. As an interdisciplinary scientific discipline, it focuses on developing and adapting information technologies to understand processes on the Earth and human-place interactions, to detect and predict trends and patterns in the observed data, and to support decision making. The authors – members of DGK, the Geoinformatics division, as part of the Committee on Geodesy of the Bavarian Academy of Sciences and Humanities, representing geodetic research and university teaching in Germany – have prepared this paper as a means to point out future research questions and directions in geospatial information science. For the different facets of geospatial information science, the state of art is presented and underlined with mostly own case studies. The paper thus illustrates which contributions the German GI community makes and which research perspectives arise in geospatial information science. The paper further demonstrates that GI science, with its expertise in data acquisition and interpretation, information modeling and management, integration, decision support, visualization, and dissemination, can help solve many of the grand challenges facing society today and in the future

    Handling Data Consistency through Spatial Data Integrity Rules in Constraint Decision Tables

    Get PDF

    Data integration in a modular and parallel grid-computing workflow

    Get PDF
    In the past decades a wide range of complex processes have been developed to solve specific geospatial data integration problems. As a drawback these complex processes are often not sufficiently transferable and interoperable. We propose modularisation of the whole data integration process into reusable, exchangeable, and multi-purpose web services to overcome these drawbacks. Both a high-level split of the process into subsequent modules such as pre-processing and feature matching is discussed as well as another fine-granular split within these modules. Thereby complex integration problems can be addressed by chaining selected services as part of a geo-processing workflow. Parallelization is needed for processing massive amounts of data or complex algorithms. In this paper the two concepts of task and data parallelization are compared and examples for their usage are given. The presented work provides vector data integration within grid-computing workflows of the German Spatial Data Infrastructure Grid (SDI-Grid) project.BMB

    Multiscale visualization approaches for Volunteered Geographic Information and Location-based Social Media

    Get PDF
    Today, “zoomable” maps are a state-of-the-art way to explore the world, available to anyone with Internet access. However, the process of creating this visualization has been rather loosely investigated and documented. Nevertheless, with an increasing amount of available data, interactive maps have become a more integral approach to visualizing and exploring big datasets and user-generated data. OpenStreetMap and online platforms such as Twitter and Flickr offer application programming interfaces (APIs) with geographic information. They are well-known examples of this visualization challenge and are often used as examples. In addition, an increasing number of public administrations collect open data and publish their data sets, which makes the task of visualization even more relevant. This dissertation deals with the visualization of user-generated geodata as a multiscale map. The basics of today’s multiscale maps—their history, technologies, and possibilities—are explored and abstracted. This work introduces two new multiscale-focused visualization approaches for point data from volunteered geographic information (VGI) and location-based social media (LBSM). One contribution of this effort is a visualization methodology for spatially referenced information in the form of point geometries, using nominally scaled data from social media such as Twitter or Flickr. Typical for this data is a high number of social media posts in different categories—a post on social media corresponds to a point in a specific category. Due to the sheer quantity and similar characteristics, the posts appear generic rather than unique. This type of dataset can be explored using the new method of micro diagrams to visualize the dataset on multiple scales and resolutions. The data is aggregated into small grid cells, and the numerical proportion is shown with small diagrams, which can visually merge into heterogenous areas through colors depicting a specific category. The diagram sizes allow the user to estimate the overall number of aggregated points in a grid cell. A different visualization approach is proposed for more unique points, considered points of interest (POI), based on the selection method. The goal is to identify more locally relevant points from the data set, considered more important compared to other points in the neighborhood, which are then compared by numerical attribute. The method, derived from topographic isolation and called discrete isolation, is the distance from one point to the next with a higher attribute value. By using this measure, the most essential points can be easily selected by choosing a minimum distance and producing a homogenous spatial of the selected points within the chosen dataset. The two newly developed approaches are applied to multiscale mapping by constructing example workflows that produce multiscale maps. The publicly available multiscale mapping workflows OpenMapTiles and OpenStreetMap Carto, using OpenStreetMap data, are systematically explored and analyzed. The result is a general workflow for multiscale map production and a short overview of the toolchain software. In particular, the generalization approaches in the example projects are discussed and these are classified into cartographic theories on the basis of literature. The workflow is demonstrated by building a raster tile service for the micro diagrams and a vector tile service for the discrete isolation, able to be used with just a web browser. In conclusion, these new approaches for point data using VGI and LBSM allow better qualitative visualization of geodata. While analyzing vast global datasets is challenging, exploring and analyzing hidden data patterns is fruitful. Creating this degree of visualization and producing maps on multiple scales is a complicated task. The workflows and tools provided in this thesis will make map production on a worldwide scale easier.:1 Introduction 1 1.1 Motivation .................................................................................................. 3 1.2 Visualization of crowdsourced geodata on multiple scales ............ 5 1.2.1 Research objective 1: Visualization of point collections ......... 6 1.2.2 Research objective 2: Visualization of points of interest ......... 7 1.2.3 Research objective 3: Production of multiscale maps ............. 7 1.3 Reader’s guide ......................................................................................... 9 1.3.1 Structure ........................................................................................... 9 1.3.2 Related Publications ....................................................................... 9 1.3.3 Formatting and layout ................................................................. 10 1.3.4 Online examples ........................................................................... 10 2 Foundations of crowdsourced mapping on multiple scales 11 2.1 Types and properties of crowdsourced data .................................. 11 2.2 Currents trends in cartography ......................................................... 11 2.3 Definitions .............................................................................................. 12 2.3.1 VGI .................................................................................................. 12 2.3.2 LBSM .............................................................................................. 13 2.3.3 Space, place, and location......................................................... 13 2.4 Visualization approaches for crowdsourced geodata ................... 14 2.4.1 Review of publications and visualization approaches ........... 14 2.4.2 Conclusions from the review ...................................................... 15 2.4.3 Challenges mapping crowdsourced data ................................ 17 2.5 Technologies for serving multiscale maps ...................................... 17 2.5.1 Research about multiscale maps .............................................. 17 2.5.2 Web Mercator projection ............................................................ 18 2.5.3 Tiles and zoom levels .................................................................. 19 2.5.4 Raster tiles ..................................................................................... 21 2.5.5 Vector tiles .................................................................................... 23 2.5.6 Tiling as a principle ..................................................................... 25 3 Point collection visualization with categorized attributes 26 3.1 Target users and possible tasks ....................................................... 26 3.2 Example data ......................................................................................... 27 3.3 Visualization approaches .................................................................... 28 3.3.1 Common techniques .................................................................... 28 3.3.2 The micro diagram approach .................................................... 30 3.4 The micro diagram and its parameters ............................................ 33 3.4.1 Aggregating points into a regular structure ............................ 33 3.4.2 Visualizing the number of data points ...................................... 35 3.4.3 Grid and micro diagrams ............................................................ 36 3.4.4 Visualizing numerical proportions with diagrams .................. 37 3.4.5 Influence of color and color brightness ................................... 38 3.4.6 Interaction options with micro diagrams .................................. 39 3.5 Application and user-based evaluation ............................................ 39 3.5.1 Micro diagrams in a multiscale environment ........................... 39 3.5.2 The micro diagram user study ................................................... 41 3.5.3 Point collection visualization discussion .................................. 47 4 Selection of POIs for visualization 50 4.1 Approaches for point selection .......................................................... 50 4.2 Methods for point selection ................................................................ 51 4.2.1 Label grid approach .................................................................... 52 4.2.2 Functional importance approach .............................................. 53 4.2.3 Discrete isolation approach ....................................................... 54 4.3 Functional evaluation of selection methods .................................... 56 4.3.1 Runtime comparison .................................................................... 56 4.3.2 Use cases for discrete isolation ................................................ 57 4.4 Discussion of the selection approaches .......................................... 61 4.4.1 A critical view of the use cases ................................................. 61 4.4.2 Comparing the approaches ........................................................ 62 4.4.3 Conclusion ..................................................................................... 64 5 Creating multiscale maps 65 5.1 Examples of multiscale map production .......................................... 65 5.1.1 OpenStreetMap Infrastructure ................................................... 66 5.1.2 OpenStreetMap Carto ................................................................. 67 5.1.3 OpenMapTiles ............................................................................... 73 5.2 Methods of multiscale map production ............................................ 80 5.2.1 OpenStreetMap tools ................................................................... 80 5.2.2 Geoprocessing .............................................................................. 80 5.2.3 Database ........................................................................................ 80 5.2.4 Creating tiles ................................................................................. 82 5.2.5 Caching .......................................................................................... 82 5.2.6 Styling tiles .................................................................................... 82 5.2.7 Viewing tiles ................................................................................... 83 5.2.8 The stackless approach to tile creation ................................... 83 5.3 Example workflows for creating multiscale maps ........................... 84 5.3.1 Raster tiles: OGC services and micro diagrams .................... 84 5.3.2 Vector tiles: Slippy map and vector tiles ................................. 87 5.4 Discussion of approaches and workflows ....................................... 90 5.4.1 Map production as a rendering pipeline .................................. 90 5.4.2 Comparison of OpenStreetMap Carto and OpenMapTiles .. 92 5.4.3 Discussion of the implementations ........................................... 93 5.4.4 Generalization in map production workflows .......................... 95 5.4.5 Conclusions ................................................................................. 101 6 Discussion 103 6.1 Development for web mapping ........................................................ 103 6.1.1 The role of standards in map production .............................. 103 6.1.2 Technological development ..................................................... 103 6.2 New data, new mapping techniques? ............................................. 104 7 Conclusion 106 7.1 Visualization of point collections ..................................................... 106 7.2 Visualization of points of interest ................................................... 107 7.3 Production of multiscale maps ........................................................ 107 7.4 Synthesis of the research questions .............................................. 108 7.5 Contributions ....................................................................................... 109 7.6 Limitations ............................................................................................ 110 7.7 Outlook ................................................................................................. 111 8 References 113 9 Appendix 130 9.1 Zoom levels and Scale ...................................................................... 130 9.3 Full information about selected UGC papers ................................ 131 9.4 Timeline of mapping technologies .................................................. 133 9.5 Timeline of map providers ................................................................ 133 9.6 Code snippets from own map production workflows .................. 134 9.6.1 Vector tiles workflow ................................................................. 134 9.6.2 Raster tiles workflow.................................................................. 137Heute sind zoombare Karten Alltag fĂŒr jeden Internetznutzer. Die Erstellung interaktiv zoombarer Karten ist allerdings wenig erforscht, was einen deutlichen Gegensatz zu ihrer aktuellen Bedeutung und NutzungshĂ€ufigkeit darstellt. Die Forschung in diesem Bereich ist also umso notwendiger. Steigende Datenmengen und grĂ¶ĂŸere Regionen, die von Karten abgedeckt werden sollen, unterstreichen den Forschungsbedarf umso mehr. Beispiele fĂŒr stetig wachsende Datenmengen sind Geodatenquellen wie OpenStreetMap aber auch freie amtliche GeodatensĂ€tze (OpenData), aber auch die zunehmende Zahl georeferenzierter Inhalte auf Internetplatformen wie Twitter oder Flickr zu nennen. Das Thema dieser Arbeit ist die Visualisierung eben dieser nutzergenerierten Geodaten mittels zoombarer Karten. DafĂŒr wird die Entwicklung der zugrundeliegenden Technologien ĂŒber die letzten zwei Jahr-zehnte und die damit verbundene Möglichkeiten vorgestellt. Weitere BeitrĂ€ge sind zwei neue Visualisierungsmethoden, die sich besonders fĂŒr die Darstellung von Punktdaten aus raumbezogenen nutzergenerierten Daten und georeferenzierte Daten aus Sozialen Netzwerken eignen. Ein Beitrag dieser Arbeit ist eine neue Visualisierungsmethode fĂŒr raumbezogene Informationen in Form von Punktgeometrien mit nominal skalierten Daten aus Sozialen Medien, wie beispielsweise Twitter oder Flickr. Typisch fĂŒr diese Daten ist eine hohe Anzahl von BeitrĂ€gen mit unterschiedlichen Kategorien. Wobei die BeitrĂ€ge, bedingt durch ihre schiere Menge und Ă€hnlicher Ei-genschaften, eher generisch als einzigartig sind. Ein Beitrag in den So-zia len Medien entspricht dabei einem Punkt mit einer bestimmten Katego-rie. Ein solcher Datensatz kann mit der neuen Methode der „micro diagrams“ in verschiedenen MaßstĂ€ben und Auflösungen visualisiert und analysiert werden. Dazu werden die Daten in kleine Gitterzellen aggregiert. Die Menge und Verteilung der ĂŒber die Kategorien aggregierten Punkte wird durch kleine Diagramme dargestellt, wobei die Farben die verschiedenen Kategorien visualisieren. Durch die geringere GrĂ¶ĂŸe der einzelnen Diagramme verschmelzen die kleinen Diagramme visuell, je nach der Verteilung der Farben fĂŒr die Kategorien. Bei genauerem Hinsehen ist die SchĂ€tzung der Menge der aggregierten Punkte ĂŒber die GrĂ¶ĂŸe der Diagramme die Menge und die Verteilung ĂŒber die Kategorien möglich. FĂŒr einzigartigere Punkte, die als Points of Interest (POI) angesehen werden, wird ein anderer Visualisierungsansatz vorgeschlagen, der auf einer Auswahlmethode basiert. Ziel ist es dabei lokal relevantere Punkte aus dem Datensatz zu identifizieren, die im Vergleich zu anderen Punkten in der Nachbarschaft des Punktes verglichen nach einem numerischen Attribut wichtiger sind. Die Methode ist von dem geographischen Prinzip der Dominanz von Bergen abgeleitet und wird „discrete isolation“ genannt. Es handelt sich dabei um die Distanz von einem Punkt zum nĂ€chsten mit einem höheren Attributwert. Durch die Verwendung dieses Maßes können lokal bedeutende Punkte leicht ausgewĂ€hlt werden, indem ein minimaler Abstand gewĂ€hlt und so rĂ€umlich gleichmĂ€ĂŸig verteilte Punkte aus dem Datensatz ausgewĂ€hlt werden. Die beiden neu vorgestellten Methoden werden in den Kontext der zoombaren Karten gestellt, indem exemplarische ArbeitsablĂ€ufe erstellt werden, die als Er-gebnis eine zoombare Karte liefern. Dazu werden die frei verfĂŒgbaren Beispiele zur Herstellung von weltweiten zoombaren Karten mit nutzergenerierten Geo-daten von OpenStreetMap, anhand der Kartenprojekte OpenMapTiles und O-penStreetMap Carto analysiert und in Arbeitsschritte gegliedert. Das Ergebnis ist ein wiederverwendbarer Arbeitsablauf zur Herstellung zoombarer Karten, ergĂ€nzt durch eine Auswahl von passender Software fĂŒr die einzelnen Arbeits-schritte. Dabei wird insbesondere auf die GeneralisierungsansĂ€tze in den Beispielprojekten eingegangen und diese anhand von Literatur in die kartographische Theorie eingeordnet. Zur Demonstration des Workflows wird je ein Raster Tiles Dienst fĂŒr die „micro diagrams“ und ein Vektor Tiles Dienst fĂŒr die „discrete isolation“ erstellt. Beide Dienste lassen sich mit einem aktuellen Webbrowser nutzen. Zusammenfassend ermöglichen diese neuen VisualisierungsansĂ€tze fĂŒr Punkt-daten aus VGI und LBSM eine bessere qualitative Visualisierung der neuen Geodaten. Die Analyse riesiger globaler DatensĂ€tze ist immer noch eine Herausforderung, aber die Erforschung und Analyse verborgener Muster in den Daten ist lohnend. Die Erstellung solcher Visualisierungen und die Produktion von Karten in verschiedenen MaßstĂ€ben ist eine komplexe Aufgabe. Die in dieser Arbeit vorgestellten ArbeitsablĂ€ufe und Werkzeuge erleichtern die Erstellung von Karten in globalem Maßstab.:1 Introduction 1 1.1 Motivation .................................................................................................. 3 1.2 Visualization of crowdsourced geodata on multiple scales ............ 5 1.2.1 Research objective 1: Visualization of point collections ......... 6 1.2.2 Research objective 2: Visualization of points of interest ......... 7 1.2.3 Research objective 3: Production of multiscale maps ............. 7 1.3 Reader’s guide ......................................................................................... 9 1.3.1 Structure ........................................................................................... 9 1.3.2 Related Publications ....................................................................... 9 1.3.3 Formatting and layout ................................................................. 10 1.3.4 Online examples ........................................................................... 10 2 Foundations of crowdsourced mapping on multiple scales 11 2.1 Types and properties of crowdsourced data .................................. 11 2.2 Currents trends in cartography ......................................................... 11 2.3 Definitions .............................................................................................. 12 2.3.1 VGI .................................................................................................. 12 2.3.2 LBSM .............................................................................................. 13 2.3.3 Space, place, and location......................................................... 13 2.4 Visualization approaches for crowdsourced geodata ................... 14 2.4.1 Review of publications and visualization approaches ........... 14 2.4.2 Conclusions from the review ...................................................... 15 2.4.3 Challenges mapping crowdsourced data ................................ 17 2.5 Technologies for serving multiscale maps ...................................... 17 2.5.1 Research about multiscale maps .............................................. 17 2.5.2 Web Mercator projection ............................................................ 18 2.5.3 Tiles and zoom levels .................................................................. 19 2.5.4 Raster tiles ..................................................................................... 21 2.5.5 Vector tiles .................................................................................... 23 2.5.6 Tiling as a principle ..................................................................... 25 3 Point collection visualization with categorized attributes 26 3.1 Target users and possible tasks ....................................................... 26 3.2 Example data ......................................................................................... 27 3.3 Visualization approaches .................................................................... 28 3.3.1 Common techniques .................................................................... 28 3.3.2 The micro diagram approach .................................................... 30 3.4 The micro diagram and its parameters ............................................ 33 3.4.1 Aggregating points into a regular structure ............................ 33 3.4.2 Visualizing the number of data points ...................................... 35 3.4.3 Grid and micro diagrams ............................................................ 36 3.4.4 Visualizing numerical proportions with diagrams .................. 37 3.4.5 Influence of color and color brightness ................................... 38 3.4.6 Interaction options with micro diagrams .................................. 39 3.5 Application and user-based evaluation ............................................ 39 3.5.1 Micro diagrams in a multiscale environment ........................... 39 3.5.2 The micro diagram user study ................................................... 41 3.5.3 Point collection vis

    A conceptual framework and a risk management approach for interoperability between geospatial datacubes

    Get PDF
    De nos jours, nous observons un intĂ©rĂȘt grandissant pour les bases de donnĂ©es gĂ©ospatiales multidimensionnelles. Ces bases de donnĂ©es sont dĂ©veloppĂ©es pour faciliter la prise de dĂ©cisions stratĂ©giques des organisations, et plus spĂ©cifiquement lorsqu’il s’agit de donnĂ©es de diffĂ©rentes Ă©poques et de diffĂ©rents niveaux de granularitĂ©. Cependant, les utilisateurs peuvent avoir besoin d’utiliser plusieurs bases de donnĂ©es gĂ©ospatiales multidimensionnelles. Ces bases de donnĂ©es peuvent ĂȘtre sĂ©mantiquement hĂ©tĂ©rogĂšnes et caractĂ©risĂ©es par diffĂ©rent degrĂ©s de pertinence par rapport au contexte d’utilisation. RĂ©soudre les problĂšmes sĂ©mantiques liĂ©s Ă  l’hĂ©tĂ©rogĂ©nĂ©itĂ© et Ă  la diffĂ©rence de pertinence d’une maniĂšre transparente aux utilisateurs a Ă©tĂ© l’objectif principal de l’interopĂ©rabilitĂ© au cours des quinze derniĂšres annĂ©es. Dans ce contexte, diffĂ©rentes solutions ont Ă©tĂ© proposĂ©es pour traiter l’interopĂ©rabilitĂ©. Cependant, ces solutions ont adoptĂ© une approche non systĂ©matique. De plus, aucune solution pour rĂ©soudre des problĂšmes sĂ©mantiques spĂ©cifiques liĂ©s Ă  l’interopĂ©rabilitĂ© entre les bases de donnĂ©es gĂ©ospatiales multidimensionnelles n’a Ă©tĂ© trouvĂ©e. Dans cette thĂšse, nous supposons qu’il est possible de dĂ©finir une approche qui traite ces problĂšmes sĂ©mantiques pour assurer l’interopĂ©rabilitĂ© entre les bases de donnĂ©es gĂ©ospatiales multidimensionnelles. Ainsi, nous dĂ©finissons tout d’abord l’interopĂ©rabilitĂ© entre ces bases de donnĂ©es. Ensuite, nous dĂ©finissons et classifions les problĂšmes d’hĂ©tĂ©rogĂ©nĂ©itĂ© sĂ©mantique qui peuvent se produire au cours d’une telle interopĂ©rabilitĂ© de diffĂ©rentes bases de donnĂ©es gĂ©ospatiales multidimensionnelles. Afin de rĂ©soudre ces problĂšmes d’hĂ©tĂ©rogĂ©nĂ©itĂ© sĂ©mantique, nous proposons un cadre conceptuel qui se base sur la communication humaine. Dans ce cadre, une communication s’établit entre deux agents systĂšme reprĂ©sentant les bases de donnĂ©es gĂ©ospatiales multidimensionnelles impliquĂ©es dans un processus d’interopĂ©rabilitĂ©. Cette communication vise Ă  Ă©changer de l’information sur le contenu de ces bases. Ensuite, dans l’intention d’aider les agents Ă  prendre des dĂ©cisions appropriĂ©es au cours du processus d’interopĂ©rabilitĂ©, nous Ă©valuons un ensemble d’indicateurs de la qualitĂ© externe (fitness-for-use) des schĂ©mas et du contexte de production (ex., les mĂ©tadonnĂ©es). Finalement, nous mettons en Ɠuvre l’approche afin de montrer sa faisabilitĂ©.Today, we observe wide use of geospatial databases that are implemented in many forms (e.g., transactional centralized systems, distributed databases, multidimensional datacubes). Among those possibilities, the multidimensional datacube is more appropriate to support interactive analysis and to guide the organization’s strategic decisions, especially when different epochs and levels of information granularity are involved. However, one may need to use several geospatial multidimensional datacubes which may be semantically heterogeneous and having different degrees of appropriateness to the context of use. Overcoming the semantic problems related to the semantic heterogeneity and to the difference in the appropriateness to the context of use in a manner that is transparent to users has been the principal aim of interoperability for the last fifteen years. However, in spite of successful initiatives, today's solutions have evolved in a non systematic way. Moreover, no solution has been found to address specific semantic problems related to interoperability between geospatial datacubes. In this thesis, we suppose that it is possible to define an approach that addresses these semantic problems to support interoperability between geospatial datacubes. For that, we first describe interoperability between geospatial datacubes. Then, we define and categorize the semantic heterogeneity problems that may occur during the interoperability process of different geospatial datacubes. In order to resolve semantic heterogeneity between geospatial datacubes, we propose a conceptual framework that is essentially based on human communication. In this framework, software agents representing geospatial datacubes involved in the interoperability process communicate together. Such communication aims at exchanging information about the content of geospatial datacubes. Then, in order to help agents to make appropriate decisions during the interoperability process, we evaluate a set of indicators of the external quality (fitness-for-use) of geospatial datacube schemas and of production context (e.g., metadata). Finally, we implement the proposed approach to show its feasibility
    • 

    corecore