1,072 research outputs found

    Computational Indistinguishability between Quantum States and Its Cryptographic Application

    Full text link
    We introduce a computational problem of distinguishing between two specific quantum states as a new cryptographic problem to design a quantum cryptographic scheme that is "secure" against any polynomial-time quantum adversary. Our problem, QSCDff, is to distinguish between two types of random coset states with a hidden permutation over the symmetric group of finite degree. This naturally generalizes the commonly-used distinction problem between two probability distributions in computational cryptography. As our major contribution, we show that QSCDff has three properties of cryptographic interest: (i) QSCDff has a trapdoor; (ii) the average-case hardness of QSCDff coincides with its worst-case hardness; and (iii) QSCDff is computationally at least as hard as the graph automorphism problem in the worst case. These cryptographic properties enable us to construct a quantum public-key cryptosystem, which is likely to withstand any chosen plaintext attack of a polynomial-time quantum adversary. We further discuss a generalization of QSCDff, called QSCDcyc, and introduce a multi-bit encryption scheme that relies on similar cryptographic properties of QSCDcyc.Comment: 24 pages, 2 figures. We improved presentation, and added more detail proofs and follow-up of recent wor

    A New Cryptosystem Based On Hidden Order Groups

    Get PDF
    Let G1G_1 be a cyclic multiplicative group of order nn. It is known that the Diffie-Hellman problem is random self-reducible in G1G_1 with respect to a fixed generator gg if ϕ(n)\phi(n) is known. That is, given g,gx∈G1g, g^x\in G_1 and having oracle access to a `Diffie-Hellman Problem' solver with fixed generator gg, it is possible to compute g1/x∈G1g^{1/x} \in G_1 in polynomial time (see theorem 3.2). On the other hand, it is not known if such a reduction exists when ϕ(n)\phi(n) is unknown (see conjuncture 3.1). We exploit this ``gap'' to construct a cryptosystem based on hidden order groups and present a practical implementation of a novel cryptographic primitive called an \emph{Oracle Strong Associative One-Way Function} (O-SAOWF). O-SAOWFs have applications in multiparty protocols. We demonstrate this by presenting a key agreement protocol for dynamic ad-hoc groups.Comment: removed examples for multiparty key agreement and join protocols, since they are redundan

    Contributions to Lattice–based Cryptography

    Get PDF
    Post–quantum cryptography (PQC) is a new and fast–growing part of Cryptography. It focuses on developing cryptographic algorithms and protocols that resist quantum adversaries (i.e., the adversaries who have access to quantum computers). To construct a new PQC primitive, a designer must use a mathematical problem intractable for the quantum adversary. Many intractability assumptions are being used in PQC. There seems to be a consensus in the research community that the most promising are intractable/hard problems in lattices. However, lattice–based cryptography still needs more research to make it more efficient and practical. The thesis contributes toward achieving either the novelty or the practicality of lattice– based cryptographic systems

    Public Key Cryptography based on Semigroup Actions

    Full text link
    A generalization of the original Diffie-Hellman key exchange in (Z/pZ)∗(\Z/p\Z)^* found a new depth when Miller and Koblitz suggested that such a protocol could be used with the group over an elliptic curve. In this paper, we propose a further vast generalization where abelian semigroups act on finite sets. We define a Diffie-Hellman key exchange in this setting and we illustrate how to build interesting semigroup actions using finite (simple) semirings. The practicality of the proposed extensions rely on the orbit sizes of the semigroup actions and at this point it is an open question how to compute the sizes of these orbits in general and also if there exists a square root attack in general. In Section 2 a concrete practical semigroup action built from simple semirings is presented. It will require further research to analyse this system.Comment: 20 pages. To appear in Advances in Mathematics of Communication
    • …
    corecore