103 research outputs found

    I/O embedding and broadcasting in star interconnection networks

    Full text link
    The issues of communication between a host or central controller and processors, in large interconnection networks are very important and have been studied in the past by several researchers. There is a plethora of problems that arise when processors are asked to exchange information on parallel computers on which processors are interconnected according to a specific topology. In robust networks, it is desirable at times to send (receive) data/control information to (from) all the processors in minimal time. This type of communication is commonly referred to as broadcasting. To speed up broadcasting in a given network without modifying its topology, certain processors called stations can be specified to act as relay agents. In this thesis, broadcasting issues in a star-based interconnection network are studied. The model adopted assumes all-port communication and wormhole switching mechanism. Initially, the problem treated is one of finding the minimum number of stations required to cover all the nodes in the star graph with i-adjacency. We consider 1-, 2-, and 3-adjacencies and determine the upper bound on the number of stations required to cover the nodes for each case. After deriving the number of stations, two algorithms are designed to broadcast the messages first from the host to stations, and then from stations to remaining nodes; In addition, a Binary-based Algorithm is designed to allow routing in the network by directly working on the binary labels assigned to the star graph. No look-up table is consulted during routing and minimum number of bits are used to represent a node label. At the end, the thesis sheds light on another algorithm for routing using parallel paths in the star network

    Interconnection networks for parallel and distributed computing

    Get PDF
    Parallel computers are generally either shared-memory machines or distributed- memory machines. There are currently technological limitations on shared-memory architectures and so parallel computers utilizing a large number of processors tend tube distributed-memory machines. We are concerned solely with distributed-memory multiprocessors. In such machines, the dominant factor inhibiting faster global computations is inter-processor communication. Communication is dependent upon the topology of the interconnection network, the routing mechanism, the flow control policy, and the method of switching. We are concerned with issues relating to the topology of the interconnection network. The choice of how we connect processors in a distributed-memory multiprocessor is a fundamental design decision. There are numerous, often conflicting, considerations to bear in mind. However, there does not exist an interconnection network that is optimal on all counts and trade-offs have to be made. A multitude of interconnection networks have been proposed with each of these networks having some good (topological) properties and some not so good. Existing noteworthy networks include trees, fat-trees, meshes, cube-connected cycles, butterflies, Möbius cubes, hypercubes, augmented cubes, k-ary n-cubes, twisted cubes, n-star graphs, (n, k)-star graphs, alternating group graphs, de Bruijn networks, and bubble-sort graphs, to name but a few. We will mainly focus on k-ary n-cubes and (n, k)-star graphs in this thesis. Meanwhile, we propose a new interconnection network called augmented k-ary n- cubes. The following results are given in the thesis.1. Let k ≥ 4 be even and let n ≥ 2. Consider a faulty k-ary n-cube Q(^k_n) in which the number of node faults f(_n) and the number of link faults f(_e) are such that f(_n) + f(_e) ≤ 2n - 2. We prove that given any two healthy nodes s and e of Q(^k_n), there is a path from s to e of length at least k(^n) - 2f(_n) - 1 (resp. k(^n) - 2f(_n) - 2) if the nodes s and e have different (resp. the same) parities (the parity of a node Q(^k_n) in is the sum modulo 2 of the elements in the n-tuple over 0, 1, ∙∙∙ , k - 1 representing the node). Our result is optimal in the sense that there are pairs of nodes and fault configurations for which these bounds cannot be improved, and it answers questions recently posed by Yang, Tan and Hsu, and by Fu. Furthermore, we extend known results, obtained by Kim and Park, for the case when n = 2.2. We give precise solutions to problems posed by Wang, An, Pan, Wang and Qu and by Hsieh, Lin and Huang. In particular, we show that Q(^k_n) is bi-panconnected and edge-bipancyclic, when k ≥ 3 and n ≥ 2, and we also show that when k is odd, Q(^k_n) is m-panconnected, for m = (^n(k - 1) + 2k - 6’ / ‘_2), and (k -1) pancyclic (these bounds are optimal). We introduce a path-shortening technique, called progressive shortening, and strengthen existing results, showing that when paths are formed using progressive shortening then these paths can be efficiently constructed and used to solve a problem relating to the distributed simulation of linear arrays and cycles in a parallel machine whose interconnection network is Q(^k_n) even in the presence of a faulty processor.3. We define an interconnection network AQ(^k_n) which we call the augmented k-ary n-cube by extending a k-ary n-cube in a manner analogous to the existing extension of an n-dimensional hypercube to an n-dimensional augmented cube. We prove that the augmented k-ary n-cube Q(^k_n) has a number of attractive properties (in the context of parallel computing). For example, we show that the augmented k-ary n-cube Q(^k_n) - is a Cayley graph (and so is vertex-symmetric); has connectivity 4n - 2, and is such that we can build a set of 4n - 2 mutually disjoint paths joining any two distinct vertices so that the path of maximal length has length at most max{{n- l)k- (n-2), k + 7}; has diameter [(^k) / (_3)] + [(^k - 1) /( _3)], when n = 2; and has diameter at most (^k) / (_4) (n+ 1), for n ≥ 3 and k even, and at most [(^k)/ (_4) (n + 1) + (^n) / (_4), for n ^, for n ≥ 3 and k odd.4. We present an algorithm which given a source node and a set of n - 1 target nodes in the (n, k)-star graph S(_n,k) where all nodes are distinct, builds a collection of n - 1 node-disjoint paths, one from each target node to the source. The collection of paths output from the algorithm is such that each path has length at most 6k - 7, and the algorithm has time complexity O(k(^3)n(^4))

    Paired 2-disjoint path covers of burnt pancake graphs with faulty elements

    Full text link
    The burnt pancake graph BPnBP_n is the Cayley graph of the hyperoctahedral group using prefix reversals as generators. Let {u,v}\{u,v\} and {x,y}\{x,y\} be any two pairs of distinct vertices of BPnBP_n for n≥4n\geq 4. We show that there are u−vu-v and x−yx-y paths whose vertices partition the vertex set of BPnBP_n even if BPnBP_n has up to n−4n-4 faulty elements. On the other hand, for every n≥3n\ge3 there is a set of n−2n-2 faulty edges or faulty vertices for which such a fault-free disjoint path cover does not exist.Comment: 14 pages, 4 figure

    Parallel Architectures for Planetary Exploration Requirements (PAPER)

    Get PDF
    The Parallel Architectures for Planetary Exploration Requirements (PAPER) project is essentially research oriented towards technology insertion issues for NASA's unmanned planetary probes. It was initiated to complement and augment the long-term efforts for space exploration with particular reference to NASA/LaRC's (NASA Langley Research Center) research needs for planetary exploration missions of the mid and late 1990s. The requirements for space missions as given in the somewhat dated Advanced Information Processing Systems (AIPS) requirements document are contrasted with the new requirements from JPL/Caltech involving sensor data capture and scene analysis. It is shown that more stringent requirements have arisen as a result of technological advancements. Two possible architectures, the AIPS Proof of Concept (POC) configuration and the MAX Fault-tolerant dataflow multiprocessor, were evaluated. The main observation was that the AIPS design is biased towards fault tolerance and may not be an ideal architecture for planetary and deep space probes due to high cost and complexity. The MAX concepts appears to be a promising candidate, except that more detailed information is required. The feasibility for adding neural computation capability to this architecture needs to be studied. Key impact issues for architectural design of computing systems meant for planetary missions were also identified
    • …
    corecore