4,271 research outputs found

    Reconfigurable Hardware Accelerators: Opportunities, Trends, and Challenges

    Full text link
    With the emerging big data applications of Machine Learning, Speech Recognition, Artificial Intelligence, and DNA Sequencing in recent years, computer architecture research communities are facing the explosive scale of various data explosion. To achieve high efficiency of data-intensive computing, studies of heterogeneous accelerators which focus on latest applications, have become a hot issue in computer architecture domain. At present, the implementation of heterogeneous accelerators mainly relies on heterogeneous computing units such as Application-specific Integrated Circuit (ASIC), Graphics Processing Unit (GPU), and Field Programmable Gate Array (FPGA). Among the typical heterogeneous architectures above, FPGA-based reconfigurable accelerators have two merits as follows: First, FPGA architecture contains a large number of reconfigurable circuits, which satisfy requirements of high performance and low power consumption when specific applications are running. Second, the reconfigurable architectures of employing FPGA performs prototype systems rapidly and features excellent customizability and reconfigurability. Nowadays, in top-tier conferences of computer architecture, emerging a batch of accelerating works based on FPGA or other reconfigurable architectures. To better review the related work of reconfigurable computing accelerators recently, this survey reserves latest high-level research products of reconfigurable accelerator architectures and algorithm applications as the basis. In this survey, we compare hot research issues and concern domains, furthermore, analyze and illuminate advantages, disadvantages, and challenges of reconfigurable accelerators. In the end, we prospect the development tendency of accelerator architectures in the future, hoping to provide a reference for computer architecture researchers

    Synergy: A HW/SW Framework for High Throughput CNNs on Embedded Heterogeneous SoC

    Full text link
    Convolutional Neural Networks (CNN) have been widely deployed in diverse application domains. There has been significant progress in accelerating both their training and inference using high-performance GPUs, FPGAs, and custom ASICs for datacenter-scale environments. The recent proliferation of mobile and IoT devices have necessitated real-time, energy-efficient deep neural network inference on embedded-class, resource-constrained platforms. In this context, we present {\em Synergy}, an automated, hardware-software co-designed, pipelined, high-throughput CNN inference framework on embedded heterogeneous system-on-chip (SoC) architectures (Xilinx Zynq). {\em Synergy} leverages, through multi-threading, all the available on-chip resources, which includes the dual-core ARM processor along with the FPGA and the NEON SIMD engines as accelerators. Moreover, {\em Synergy} provides a unified abstraction of the heterogeneous accelerators (FPGA and NEON) and can adapt to different network configurations at runtime without changing the underlying hardware accelerator architecture by balancing workload across accelerators through work-stealing. {\em Synergy} achieves 7.3X speedup, averaged across seven CNN models, over a well-optimized software-only solution. {\em Synergy} demonstrates substantially better throughput and energy-efficiency compared to the contemporary CNN implementations on the same SoC architecture.Comment: 34 pages, submitted to ACM Transactions on Embedded Computing Systems (TECS

    High Level Synthesis with a Dataflow Architectural Template

    Full text link
    In this work, we present a new approach to high level synthesis (HLS), where high level functions are first mapped to an architectural template, before hardware synthesis is performed. As FPGA platforms are especially suitable for implementing streaming processing pipelines, we perform transformations on conventional high level programs where they are turned into multi-stage dataflow engines [1]. This target template naturally overlaps slow memory data accesses with computations and therefore has much better tolerance towards memory subsystem latency. Using a state-of-the-art HLS tool for the actual circuit generation, we observe up to 9x improvement in overall performance when the dataflow architectural template is used as an intermediate compilation target.Comment: Presented at 2nd International Workshop on Overlay Architectures for FPGAs (OLAF 2016) arXiv:1605.0814

    Resource-Aware Just-in-Time OpenCL Compiler for Coarse-Grained FPGA Overlays

    Full text link
    FPGA vendors have recently started focusing on OpenCL for FPGAs because of its ability to leverage the parallelism inherent to heterogeneous computing platforms. OpenCL allows programs running on a host computer to launch accelerator kernels which can be compiled at run-time for a specific architecture, thus enabling portability. However, the prohibitive compilation times (specifically the FPGA place and route times) are a major stumbling block when using OpenCL tools from FPGA vendors. The long compilation times mean that the tools cannot effectively use just-in-time (JIT) compilation or runtime performance scaling. Coarse-grained overlays represent a possible solution by virtue of their coarse granularity and fast compilation. In this paper, we present a methodology for run-time compilation of OpenCL kernels to a DSP block based coarse-grained overlay, rather than directly to the fine-grained FPGA fabric. The proposed methodology allows JIT compilation and on-demand resource-aware kernel replication to better utilize available overlay resources, raising the abstraction level while reducing compile times significantly. We further demonstrate that this approach can even be used for run-time compilation of OpenCL kernels on the ARM processor of the embedded heterogeneous Zynq device.Comment: Presented at 3rd International Workshop on Overlay Architectures for FPGAs (OLAF 2017) arXiv:1704.0880

    FPGA-based Accelerators of Deep Learning Networks for Learning and Classification: A Review

    Full text link
    Due to recent advances in digital technologies, and availability of credible data, an area of artificial intelligence, deep learning, has emerged, and has demonstrated its ability and effectiveness in solving complex learning problems not possible before. In particular, convolution neural networks (CNNs) have demonstrated their effectiveness in image detection and recognition applications. However, they require intensive CPU operations and memory bandwidth that make general CPUs fail to achieve desired performance levels. Consequently, hardware accelerators that use application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), and graphic processing units (GPUs) have been employed to improve the throughput of CNNs. More precisely, FPGAs have been recently adopted for accelerating the implementation of deep learning networks due to their ability to maximize parallelism as well as due to their energy efficiency. In this paper, we review recent existing techniques for accelerating deep learning networks on FPGAs. We highlight the key features employed by the various techniques for improving the acceleration performance. In addition, we provide recommendations for enhancing the utilization of FPGAs for CNNs acceleration. The techniques investigated in this paper represent the recent trends in FPGA-based accelerators of deep learning networks. Thus, this review is expected to direct the future advances on efficient hardware accelerators and to be useful for deep learning researchers.Comment: This article has been accepted for publication in IEEE Access (December, 2018

    Criteria and Approaches for Virtualization on Modern FPGAs

    Full text link
    Modern field programmable gate arrays (FPGAs) can produce high performance in a wide range of applications, and their computational capacity is becoming abundant in personal computers. Regardless of this fact, FPGA virtualization is an emerging research field. Nowadays, challenges of the research area come from not only technical difficulties but also from the ambiguous standards of virtualization. In this paper, we introduce novel criteria of FPGA virtualization and discuss several approaches to accomplish those criteria. In addition, we present and describe in detail the specific FPGA virtualization architecture that we developed on Intel Arria 10 FPGA. We evaluate our solution with a combination of applications and microbenchmarks. The result shows that our virtualization solution can provide a full abstraction of FPGA device in both user and developer perspective while maintaining a reasonable performance compared to native FPGA

    Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions

    Get PDF
    In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, several software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context, reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated in the existing deep learning ecosystem to provide a tunable balance between performance, power consumption and programmability. In this paper, a survey of the existing CNN-to-FPGA toolflows is presented, comprising a comparative study of their key characteristics which include the supported applications, architectural choices, design space exploration methods and achieved performance. Moreover, major challenges and objectives introduced by the latest trends in CNN algorithmic research are identified and presented. Finally, a uniform evaluation methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA toolflows.Comment: Accepted for publication at the ACM Computing Surveys (CSUR) journal, 201

    Massively Parallel Processor Architectures for Resource-aware Computing

    Full text link
    We present a class of massively parallel processor architectures called invasive tightly coupled processor arrays (TCPAs). The presented processor class is a highly parameterizable template, which can be tailored before runtime to fulfill costumers' requirements such as performance, area cost, and energy efficiency. These programmable accelerators are well suited for domain-specific computing from the areas of signal, image, and video processing as well as other streaming processing applications. To overcome future scaling issues (e.g., power consumption, reliability, resource management, as well as application parallelization and mapping), TCPAs are inherently designed in a way to support self-adaptivity and resource awareness at hardware level. Here, we follow a recently introduced resource-aware parallel computing paradigm called invasive computing where an application can dynamically claim, execute, and release resources. Furthermore, we show how invasive computing can be used as an enabler for power management. Finally, we will introduce ideas on how to realize fault-tolerant loop execution on such massively parallel architectures through employing on-demand spatial redundancies at the processor array level.Comment: Presented at 1st Workshop on Resource Awareness and Adaptivity in Multi-Core Computing (Racing 2014) (arXiv:1405.2281

    Analytical Cost Metrics : Days of Future Past

    Full text link
    As we move towards the exascale era, the new architectures must be capable of running the massive computational problems efficiently. Scientists and researchers are continuously investing in tuning the performance of extreme-scale computational problems. These problems arise in almost all areas of computing, ranging from big data analytics, artificial intelligence, search, machine learning, virtual/augmented reality, computer vision, image/signal processing to computational science and bioinformatics. With Moore's law driving the evolution of hardware platforms towards exascale, the dominant performance metric (time efficiency) has now expanded to also incorporate power/energy efficiency. Therefore, the major challenge that we face in computing systems research is: "how to solve massive-scale computational problems in the most time/power/energy efficient manner?" The architectures are constantly evolving making the current performance optimizing strategies less applicable and new strategies to be invented. The solution is for the new architectures, new programming models, and applications to go forward together. Doing this is, however, extremely hard. There are too many design choices in too many dimensions. We propose the following strategy to solve the problem: (i) Models - Develop accurate analytical models (e.g. execution time, energy, silicon area) to predict the cost of executing a given program, and (ii) Complete System Design - Simultaneously optimize all the cost models for the programs (computational problems) to obtain the most time/area/power/energy efficient solution. Such an optimization problem evokes the notion of codesign

    NTX: An Energy-efficient Streaming Accelerator for Floating-point Generalized Reduction Workloads in 22nm FD-SOI

    Full text link
    Specialized coprocessors for Multiply-Accumulate (MAC) intensive workloads such as Deep Learning are becoming widespread in SoC platforms, from GPUs to mobile SoCs. In this paper we revisit NTX (an efficient accelerator developed for training Deep Neural Networks at scale) as a generalized MAC and reduction streaming engine. The architecture consists of a set of 32 bit floating-point streaming co-processors that are loosely coupled to a RISC-V core in charge of orchestrating data movement and computation. Post-layout results of a recent silicon implementation in 22 nm FD-SOI technology show the accelerator's capability to deliver up to 20 Gflop/s at 1.25 GHz and 168 mW. Based on these results we show that a version of NTX scaled down to 14 nm can achieve a 3x energy efficiency improvement over contemporary GPUs at 10.4x less silicon area, and a compute performance of 1.4 Tflop/s for training large state-of-the-art networks with full floating-point precision. An extended evaluation of MAC-intensive kernels shows that NTX can consistently achieve up to 87% of its peak performance across general reduction workloads beyond machine learning. Its modular architecture enables deployment at different scales ranging from high-performance GPU-class to low-power embedded scenarios.Comment: 6 pages, invited paper at DATE 201
    • …
    corecore