78 research outputs found

    Relation lifting, with an application to the many-valued cover modality

    Get PDF
    We introduce basic notions and results about relation liftings on categories enriched in a commutative quantale. We derive two necessary and sufficient conditions for a 2-functor T to admit a functorial relation lifting: one is the existence of a distributive law of T over the "powerset monad" on categories, one is the preservation by T of "exactness" of certain squares. Both characterisations are generalisations of the "classical" results known for set functors: the first characterisation generalises the existence of a distributive law over the genuine powerset monad, the second generalises preservation of weak pullbacks. The results presented in this paper enable us to compute predicate liftings of endofunctors of, for example, generalised (ultra)metric spaces. We illustrate this by studying the coalgebraic cover modality in this setting.Comment: 48 pages, accepted for publication in LMC

    Linear Time Logics - A Coalgebraic Perspective

    Full text link
    We describe a general approach to deriving linear time logics for a wide variety of state-based, quantitative systems, by modelling the latter as coalgebras whose type incorporates both branching behaviour and linear behaviour. Concretely, we define logics whose syntax is determined by the choice of linear behaviour and whose domain of truth values is determined by the choice of branching, and we provide two equivalent semantics for them: a step-wise semantics amenable to automata-based verification, and a path-based semantics akin to those of standard linear time logics. We also provide a semantic characterisation of the associated notion of logical equivalence, and relate it to previously-defined maximal trace semantics for such systems. Instances of our logics support reasoning about the possibility, likelihood or minimal cost of exhibiting a given linear time property. We conclude with a generalisation of the logics, dual in spirit to logics with discounting, which increases their practical appeal in the context of resource-aware computation by incorporating a notion of offsetting.Comment: Major revision of previous version: Sections 4 and 5 generalise the results in the previous version, with new proofs; Section 6 contains new result

    A Note on the Completeness of Many-Valued Coalgebraic Modal Logic

    Full text link
    In this paper, we investigate the many-valued version of coalgebraic modal logic through predicate lifting approach. Coalgebras, understood as generic transition systems, can serve as semantic structures for various kinds of modal logics. A well-known result in coalgebraic modal logic is that its completeness can be determined at the one-step level. We generalize the result to the finitely many-valued case by using the canonical model construction method. We prove the result for coalgebraic modal logics based on three different many-valued algebraic structures, including the finitely-valued {\L}ukasiewicz algebra, the commutative integral Full-Lambek algebra (FLew_{ew}-algebra) expanded with canonical constants and Baaz Delta, and the FLew_{ew}-algebra expanded with valuation operations.Comment: 17 pages, preprint for journal submissio

    Expressive Logics for Coinductive Predicates

    Get PDF
    The classical Hennessy-Milner theorem says that two states of an image-finite transition system are bisimilar if and only if they satisfy the same formulas in a certain modal logic. In this paper we study this type of result in a general context, moving from transition systems to coalgebras and from bisimilarity to coinductive predicates. We formulate when a logic fully characterises a coinductive predicate on coalgebras, by providing suitable notions of adequacy and expressivity, and give sufficient conditions on the semantics. The approach is illustrated with logics characterising similarity, divergence and a behavioural metric on automata

    Characteristic Logics for Behavioural Metrics via Fuzzy Lax Extensions

    Get PDF
    Behavioural distances provide a fine-grained measure of equivalence in systems involving quantitative data, such as probabilistic, fuzzy, or metric systems. Like in the classical setting of crisp bisimulation-type equivalences, the wide variation found in system types creates a need for generic methods that apply to many system types at once. Approaches of this kind are emerging within the paradigm of universal coalgebra, based either on lifting pseudometrics along set functors or on lifting general real-valued (fuzzy) relations along functors by means of fuzzy lax extensions. An immediate benefit of the latter is that they allow bounding behavioural distance by means of fuzzy bisimulations that need not themselves be (pseudo-)metrics, in analogy to classical bisimulations (which need not be equivalence relations). The known instances of generic pseudometric liftings, specifically the generic Kantorovich and Wasserstein liftings, both can be extended to yield fuzzy lax extensions, using the fact that both are effectively given by a choice of quantitative modalities. Our central result then shows that in fact all fuzzy lax extensions are Kantorovich extensions for a suitable set of quantitative modalities, the so-called Moss modalities. For non-expansive fuzzy lax extensions, this allows for the extraction of quantitative modal logics that characterize behavioural distance, i.e. satisfy a quantitative version of the Hennessy-Milner theorem; equivalently, we obtain expressiveness of a quantitative version of Moss\u27 coalgebraic logic

    Characteristic Logics for Behavioural Hemimetrics via Fuzzy Lax Extensions

    Full text link
    In systems involving quantitative data, such as probabilistic, fuzzy, or metric systems, behavioural distances provide a more fine-grained comparison of states than two-valued notions of behavioural equivalence or behaviour inclusion. Like in the two-valued case, the wide variation found in system types creates a need for generic methods that apply to many system types at once. Approaches of this kind are emerging within the paradigm of universal coalgebra, based either on lifting pseudometrics along set functors or on lifting general real-valued (fuzzy) relations along functors by means of fuzzy lax extensions. An immediate benefit of the latter is that they allow bounding behavioural distance by means of fuzzy (bi-)simulations that need not themselves be hemi- or pseudometrics; this is analogous to classical simulations and bisimulations, which need not be preorders or equivalence relations, respectively. The known generic pseudometric liftings, specifically the generic Kantorovich and Wasserstein liftings, both can be extended to yield fuzzy lax extensions, using the fact that both are effectively given by a choice of quantitative modalities. Our central result then shows that in fact all fuzzy lax extensions are Kantorovich extensions for a suitable set of quantitative modalities, the so-called Moss modalities. For nonexpansive fuzzy lax extensions, this allows for the extraction of quantitative modal logics that characterize behavioural distance, i.e. satisfy a quantitative version of the Hennessy-Milner theorem; equivalently, we obtain expressiveness of a quantitative version of Moss' coalgebraic logic. All our results explicitly hold also for asymmetric distances (hemimetrics), i.e. notions of quantitative simulation

    Many-valued coalgebraic logic over semi-primal varieties

    Full text link
    We study many-valued coalgebraic logics with semi-primal algebras of truth-degrees. We provide a systematic way to lift endofunctors defined on the variety of Boolean algebras to endofunctors on the variety generated by a semi-primal algebra. We show that this can be extended to a technique to lift classical coalgebraic logics to many-valued ones, and that (one-step) completeness and expressivity are preserved under this lifting. For specific classes of endofunctors, we also describe how to obtain an axiomatization of the lifted many-valued logic directly from an axiomatization of the original classical one. In particular, we apply all of these techniques to classical modal logic

    Many-Valued Coalgebraic Logic: From Boolean Algebras to Primal Varieties

    Get PDF
    We study many-valued coalgebraic logics with primal algebras of truth-degrees. We describe a way to lift algebraic semantics of classical coalgebraic logics, given by an endofunctor on the variety of Boolean algebras, to this many-valued setting, and we show that many important properties of the original logic are inherited by its lifting. Then, we deal with the problem of obtaining a concrete axiomatic presentation of the variety of algebras for this lifted logic, given that we know one for the original one. We solve this problem for a class of presentations which behaves well with respect to a lattice structure on the algebra of truth-degrees

    Completeness for the coalgebraic cover modality

    Get PDF
    • …
    corecore