74 research outputs found

    Many touchings force many crossings

    Get PDF
    Given n continuous open curves in the plane, we say that a pair is touching if they have finitely many interior points in common and at these points the first curve does not get from one side of the second curve to its other side. Otherwise, if the two curves intersect, they are said to form a crossing pair. Let t and c denote the number of touching pairs and crossing pairs, respectively. We prove that c >= 1/0(5) t(2)/n(2), provided that t >= 10n. Apart from the values of the constants, this result is best possible. (C) 2018 Elsevier Inc. All rights reserved

    Many touchings force many crossings

    Get PDF
    Given n continuous open curves in the plane, we say that a pair is touching if they have only one interior point in common and at this point the first curve does not get from one side of the second curve to its other side. Otherwise, if the two curves intersect, they are said to form a crossing pair. Let t and c denote the number of touching pairs and crossing pairs, respectively. We prove that c ≥ 1/105 t2/n2, provided that t ≥ 10n Apart from the values of the constants, this result is best possible. © Springer International Publishing AG 2018

    Dual strings and magnetohydrodynamics

    Full text link
    We investigate whether dual strings could be solutions of the magnetohydrodynamics equations in the limit of infinite conductivity. We find that the induction equation is satisfied, and we discuss the Navier-Stokes equation (without viscosity) with the Lorentz force included. We argue that the dual string equations (with a non-universal maximum velocity) should describe the large scale motion of narrow magnetic flux tubes, because of a large reparametrization (gauge) invariance of the magnetic and electric string fields. It is shown that the energy-momentum tensor for the dual string can be reinterpreted as an energy-momentum tensor for magnetohydrodynamics, provided certain conditions are satisfied. We also give a brief discussion of the case when magnetic monopoles are included, and indicate how this can lead to a non-relativistic "electrohydrodynamics" picture of confinement.Comment: 10 pages. LaTex. A minor correction has been mad

    Symmetry and topology in antiferromagnetic spintronics

    Full text link
    Antiferromagnetic spintronics focuses on investigating and using antiferromagnets as active elements in spintronics structures. Last decade advances in relativistic spintronics led to the discovery of the staggered, current-induced field in antiferromagnets. The corresponding N\'{e}el spin-orbit torque allowed for efficient electrical switching of antiferromagnetic moments and, in combination with electrical readout, for the demonstration of experimental antiferromagnetic memory devices. In parallel, the anomalous Hall effect was predicted and subsequently observed in antiferromagnets. A new field of spintronics based on antiferromagnets has emerged. We will focus here on the introduction into the most significant discoveries which shaped the field together with a more recent spin-off focusing on combining antiferromagnetic spintronics with topological effects, such as antiferromagnetic topological semimetals and insulators, and the interplay of antiferromagnetism, topology, and superconductivity in heterostructures.Comment: Book chapte

    Non-local signatures of the chiral magnetic effect in Dirac semimetal Bi0.97_{0.97}Sb0.03_{0.03}

    Get PDF
    The field of topological materials science has recently been focussing on three-dimensional Dirac semimetals, which exhibit robust Dirac phases in the bulk. However, the absence of characteristic surface states in accidental Dirac semimetals (DSM) makes it difficult to experimentally verify claims about the topological nature using commonly used surface-sensitive techniques. The chiral magnetic effect (CME), which originates from the Weyl nodes, causes an Eâ‹…B\textbf{E}\cdot\textbf{B}-dependent chiral charge polarization, which manifests itself as negative magnetoresistance. We exploit the extended lifetime of the chirally polarized charge and study the CME through both local and non-local measurements in Hall bar structures fabricated from single crystalline flakes of the DSM Bi0.97_{0.97}Sb0.03_{0.03}. From the non-local measurement results we find a chiral charge relaxation time which is over one order of magnitude larger than the Drude transport lifetime, underlining the topological nature of Bi0.97_{0.97}Sb0.03_{0.03}.Comment: 6 pages, 6 figures + 7 pages of supplemental materia
    • …
    corecore