73 research outputs found

    An update on the Hirsch conjecture

    Get PDF
    The Hirsch conjecture was posed in 1957 in a letter from Warren M. Hirsch to George Dantzig. It states that the graph of a d-dimensional polytope with n facets cannot have diameter greater than n - d. Despite being one of the most fundamental, basic and old problems in polytope theory, what we know is quite scarce. Most notably, no polynomial upper bound is known for the diameters that are conjectured to be linear. In contrast, very few polytopes are known where the bound ndn-d is attained. This paper collects known results and remarks both on the positive and on the negative side of the conjecture. Some proofs are included, but only those that we hope are accessible to a general mathematical audience without introducing too many technicalities.Comment: 28 pages, 6 figures. Many proofs have been taken out from version 2 and put into the appendix arXiv:0912.423

    One-Point Suspensions and Wreath Products of Polytopes and Spheres

    Get PDF
    It is known that the suspension of a simplicial complex can be realized with only one additional point. Suitable iterations of this construction generate highly symmetric simplicial complexes with various interesting combinatorial and topological properties. In particular, infinitely many non-PL spheres as well as contractible simplicial complexes with a vertex-transitive group of automorphisms can be obtained in this way.Comment: 17 pages, 8 figure

    A counterexample to the Hirsch conjecture

    Full text link
    The Hirsch Conjecture (1957) stated that the graph of a dd-dimensional polytope with nn facets cannot have (combinatorial) diameter greater than ndn-d. That is, that any two vertices of the polytope can be connected by a path of at most ndn-d edges. This paper presents the first counterexample to the conjecture. Our polytope has dimension 43 and 86 facets. It is obtained from a 5-dimensional polytope with 48 facets which violates a certain generalization of the dd-step conjecture of Klee and Walkup.Comment: 28 pages, 10 Figures: Changes from v2: Minor edits suggested by referees. This version has been accepted in the Annals of Mathematic
    corecore