8,857 research outputs found

    A hierarchical Mamdani-type fuzzy modelling approach with new training data selection and multi-objective optimisation mechanisms: A special application for the prediction of mechanical properties of alloy steels

    Get PDF
    In this paper, a systematic data-driven fuzzy modelling methodology is proposed, which allows to construct Mamdani fuzzy models considering both accuracy (precision) and transparency (interpretability) of fuzzy systems. The new methodology employs a fast hierarchical clustering algorithm to generate an initial fuzzy model efficiently; a training data selection mechanism is developed to identify appropriate and efficient data as learning samples; a high-performance Particle Swarm Optimisation (PSO) based multi-objective optimisation mechanism is developed to further improve the fuzzy model in terms of both the structure and the parameters; and a new tolerance analysis method is proposed to derive the confidence bands relating to the final elicited models. This proposed modelling approach is evaluated using two benchmark problems and is shown to outperform other modelling approaches. Furthermore, the proposed approach is successfully applied to complex high-dimensional modelling problems for manufacturing of alloy steels, using ‘real’ industrial data. These problems concern the prediction of the mechanical properties of alloy steels by correlating them with the heat treatment process conditions as well as the weight percentages of the chemical compositions

    Model fusion using fuzzy aggregation: Special applications to metal properties

    Get PDF
    To improve the modelling performance, one should either propose a new modelling methodology or make the best of existing models. In this paper, the study is concentrated on the latter solution, where a structure-free modelling paradigm is proposed. It does not rely on a fixed structure and can combine various modelling techniques in ‘symbiosis’ using a ‘master fuzzy system’. This approach is shown to be able to include the advantages of different modelling techniques altogether by requiring less training and by minimising the efforts relating optimisation of the final structure. The proposed approach is then successfully applied to the industrial problems of predicting machining induced residual stresses for aerospace alloy components as well as modelling the mechanical properties of heat-treated alloy steels, both representing complex, non-linear and multi-dimensional environments

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    What is Computational Intelligence and where is it going?

    Get PDF
    What is Computational Intelligence (CI) and what are its relations with Artificial Intelligence (AI)? A brief survey of the scope of CI journals and books with ``computational intelligence'' in their title shows that at present it is an umbrella for three core technologies (neural, fuzzy and evolutionary), their applications, and selected fashionable pattern recognition methods. At present CI has no comprehensive foundations and is more a bag of tricks than a solid branch of science. The change of focus from methods to challenging problems is advocated, with CI defined as a part of computer and engineering sciences devoted to solution of non-algoritmizable problems. In this view AI is a part of CI focused on problems related to higher cognitive functions, while the rest of the CI community works on problems related to perception and control, or lower cognitive functions. Grand challenges on both sides of this spectrum are addressed

    Evolutionary-based sparse regression for the experimental identification of duffing oscillator

    Get PDF
    In this paper, an evolutionary-based sparse regression algorithm is proposed and applied onto experimental data collected from a Duffing oscillator setup and numerical simulation data. Our purpose is to identify the Coulomb friction terms as part of the ordinary differential equation of the system. Correct identification of this nonlinear system using sparse identification is hugely dependent on selecting the correct form of nonlinearity included in the function library. Consequently, in this work, the evolutionary-based sparse identification is replacing the need for user knowledge when constructing the library in sparse identification. Constructing the library based on the data-driven evolutionary approach is an effective way to extend the space of nonlinear functions, allowing for the sparse regression to be applied on an extensive space of functions. The results show that the method provides an effective algorithm for the purpose of unveiling the physical nature of the Duffing oscillator. In addition, the robustness of the identification algorithm is investigated for various levels of noise in simulation. The proposed method has possible applications to other nonlinear dynamic systems in mechatronics, robotics, and electronics

    A genetic programming based fuzzy regression approach to modelling manufacturing processes

    Get PDF
    Fuzzy regression has demonstrated its ability to model manufacturing processes in which the processes have fuzziness and the number of experimental data sets for modelling them is limited. However, previous studies only yield fuzzy linear regression based process models in which variables or higher order terms are not addressed. In fact, it is widely recognised that behaviours of manufacturing processes do often carry interactions among variables or higher order terms. In this paper, a genetic programming based fuzzy regression GP-FR, is proposed for modelling manufacturing processes. The proposed method uses the general outcome of GP to construct models the structure of which is based on a tree representation, which could carry interaction and higher order terms. Then, a fuzzy linear regression algorithm is used to estimate the contributions and the fuzziness of each branch of the tree, so as to determine the fuzzy parameters of the genetic programming based fuzzy regression model.To evaluate the effectiveness of the proposed method for process modelling, it was applied to the modelling of a solder paste dispensing process. Results were compared with those based on statistical regression and fuzzy linear regression. It was found that the proposed method can achieve better goodness-of-fitness than the other two methods. Also the prediction accuracy of the model developed based on GP-FR is better than those based on the other two methods

    Modeling of epoxy dispensing process using a hybrid fuzzy regression approach

    Get PDF
    In the semiconductor manufacturing industry, epoxy dispensing is a popular process commonly used in die bonding as well as in microchip encapsulation for electronic packaging. Modeling the epoxy dispensing process is important because it enables us to understand the process behavior, as well as determine the optimum operating conditions of the process for a high yield, low cost, and robust operation. Previous studies of epoxy dispensing have mainly focused on the development of analytical models. However, an analytical model for epoxy dispensing is difficult to develop because of its complex behavior and high degree of uncertainty associated with the process in a real-world environment. Previous studies of modeling the epoxy dispensing process have not addressed the development of explicit models involving high-order and interaction terms, as well as fuzziness between process parameters. In this paper, a hybrid fuzzy regression (HFR) method integrating fuzzy regression with genetic programming is proposed to make up the deficiency. Two process models are generated for the two quality characteristics of the process, encapsulation weight and encapsulation thickness based on the HFR, respectively. Validation tests are performed. The performance of the models developed based on the HFR outperforms the performance of those based on statistical regression and fuzzy regression
    corecore