7,564 research outputs found

    Service-Oriented Architecture for Space Exploration Robotic Rover Systems

    Full text link
    Currently, industrial sectors are transforming their business processes into e-services and component-based architectures to build flexible, robust, and scalable systems, and reduce integration-related maintenance and development costs. Robotics is yet another promising and fast-growing industry that deals with the creation of machines that operate in an autonomous fashion and serve for various applications including space exploration, weaponry, laboratory research, and manufacturing. It is in space exploration that the most common type of robots is the planetary rover which moves across the surface of a planet and conducts a thorough geological study of the celestial surface. This type of rover system is still ad-hoc in that it incorporates its software into its core hardware making the whole system cohesive, tightly-coupled, more susceptible to shortcomings, less flexible, hard to be scaled and maintained, and impossible to be adapted to other purposes. This paper proposes a service-oriented architecture for space exploration robotic rover systems made out of loosely-coupled and distributed web services. The proposed architecture consists of three elementary tiers: the client tier that corresponds to the actual rover; the server tier that corresponds to the web services; and the middleware tier that corresponds to an Enterprise Service Bus which promotes interoperability between the interconnected entities. The niche of this architecture is that rover's software components are decoupled and isolated from the rover's body and possibly deployed at a distant location. A service-oriented architecture promotes integrate-ability, scalability, reusability, maintainability, and interoperability for client-to-server communication.Comment: LACSC - Lebanese Association for Computational Sciences, http://www.lacsc.org/; International Journal of Science & Emerging Technologies (IJSET), Vol. 3, No. 2, February 201

    The Management of Manufacturing-Oriented Informatics Systems Using Efficient and Flexible Architectures

    Get PDF
    Industry and in particular the manufacturing-oriented sector has always been researched and innovated as a result of technological progress, diversification and differentiation among consumers' demands. A company that provides to its customers products matching perfectly their demands at competitive prices has a great advantage over its competitors. Manufacturing-oriented information systems are becoming more flexible and configurable and they require integration with the entire organization. This can be done using efficient software architectures that will allow the coexistence between commercial solutions and open source components while sharing computing resources organized in grid infrastructures and under the governance of powerful management tools.Manufacturing-Oriented Informatics Systems, Open Source, Software Architectures, Grid Computing, Web-Based Management Systems

    Modified Stage-Gate: A Conceptual Model of Virtual Product Development Process

    Get PDF
    In today’s dynamic marketplace, manufacturing companies are under strong pressure to introduce new products for long-term survival with their competitors. Nevertheless, every company cannot cope up progressively or immediately with the market requirements due to knowledge dynamics being experienced in the competitive milieu. Increased competition and reduced product life cycles put force upon companies to develop new products faster. In response to these pressing needs, there should be some new approach compatible in flexible circumstances. This paper presents a solution based on the popular Stage-Gate system, which is closely linked with virtual team approach. Virtual teams can provide a platform to advance the knowledge-base in a company and thus to reduce time-to-market. This article introduces conceptual product development architecture under a virtual team umbrella. The paper describes all the major aspects of new product development (NPD), NPD process and its relationship with virtual teams, Stage-Gate system finally presents a modified Stage-Gate system to cope up with the changing needs. It also provides the guidelines for the successful implementation of virtual teams in new product development

    An End-to-End Big Data Analytics Platform for IoT-enabled Smart Factories: A Case Study of Battery Module Assembly System for Electric Vehicles

    Get PDF
    Within the concept of factories of the future, big data analytics systems play a critical role in supporting decision-making at various stages across enterprise processes. However, the design and deployment of industry-ready, lightweight, modular, flexible, and low-cost big data analytics solutions remains one of the main challenges towards the Industry 4.0 enabled digital transformation. This paper presents an end-to-end IoT-based big data analytics platform that consists of five interconnected layers and several components for data acquisition, integration, storage, analytics and visualisation purposes. The platform architecture benefits from state-of-the-art technologies and integrates them in a systematic and interoperable way with clear information flows. The developed platform has been deployed in an Electric Vehicle (EV) battery module smart assembly automation system designed by the Automation Systems Group (ASG) at the University of Warwick, UK. The developed proof-of-concept solution demonstrates how a wide variety of tools and methods can be orchestrated to work together aiming to support decision-making and to improve both process and product qualities in smart manufacturing environments

    A Distributed-Ledger, Edge-Computing Architecture for Automation and Computer Integration in Semiconductor Manufacturing

    Get PDF
    Contemporary 300mm semiconductor manufacturing systems have highly automated and digitalized cyber-physical integration. They suffer from the profound problems of integrating large, centralized legacy systems with small islands of automation. With the recent advances in disruptive technologies, semiconductor manufacturing has faced dramatic pressures to reengineer its automation and computer integrated systems. This paper proposes a Distributed- Ledger, Edge-Computing Architecture (DLECA) for automation and computer integration in semiconductor manufacturing. Based on distributed ledger and edge computing technologies, DLECA establishes a decentralized software framework where manufacturing data are stored in distributed ledgers and processed locally by executing smart contracts at the edge nodes. We adopt an important topic of automation and computer integration for semiconductor research & development (R&D) operations as the study vehicle to illustrate the operational structure and functionality, applications, and feasibility of the proposed DLECA software framewor

    Modified stage-gate: A conceptual model of virtual product development process

    Get PDF
    In today’s dynamic marketplace, manufacturing companies are under strong pressure to introduce new products for long-term survival with their competitors. Nevertheless, every company cannot cope up progressively or immediately with the market requirements due to knowledge dynamics being experienced in the competitive milieu. Increased competition and reduced product life cycles put force upon companies to develop new products faster. In response to these pressing needs, there should be some new approach compatible in flexible circumstances. This paper presents a solution based on the popular Stage-Gate system, which is closely linked with virtual team approach. Virtual teams can provide a platform to advance the knowledge-base in a company and thus to reduce time-to-market. This article introduces conceptual product development architecture under a virtual team umbrella. The paper describes all the major aspects of new product development (NPD), NPD process and its relationship with virtual teams, Stage-Gate system finally presents a modified Stage-Gate system to cope up with the changing needs. It also provides the guidelines for the successful implementation of virtual teams in new product development.Modified stage-gate system, virtual product development, conceptual model

    Machine Tool Communication (MTComm) Method and Its Applications in a Cyber-Physical Manufacturing Cloud

    Get PDF
    The integration of cyber-physical systems and cloud manufacturing has the potential to revolutionize existing manufacturing systems by enabling better accessibility, agility, and efficiency. To achieve this, it is necessary to establish a communication method of manufacturing services over the Internet to access and manage physical machines from cloud applications. Most of the existing industrial automation protocols utilize Ethernet based Local Area Network (LAN) and are not designed specifically for Internet enabled data transmission. Recently MTConnect has been gaining popularity as a standard for monitoring status of machine tools through RESTful web services and an XML based messaging structure, but it is only designed for data collection and interpretation and lacks remote operation capability. This dissertation presents the design, development, optimization, and applications of a service-oriented Internet-scale communication method named Machine Tool Communication (MTComm) for exchanging manufacturing services in a Cyber-Physical Manufacturing Cloud (CPMC) to enable manufacturing with heterogeneous physically connected machine tools from geographically distributed locations over the Internet. MTComm uses an agent-adapter based architecture and a semantic ontology to provide both remote monitoring and operation capabilities through RESTful services and XML messages. MTComm was successfully used to develop and implement multi-purpose applications in in a CPMC including remote and collaborative manufacturing, active testing-based and edge-based fault diagnosis and maintenance of machine tools, cross-domain interoperability between Internet-of-things (IoT) devices and supply chain robots etc. To improve MTComm’s overall performance, efficiency, and acceptability in cyber manufacturing, the concept of MTComm’s edge-based middleware was introduced and three optimization strategies for data catching, transmission, and operation execution were developed and adopted at the edge. Finally, a hardware prototype of the middleware was implemented on a System-On-Chip based FPGA device to reduce computational and transmission latency. At every stage of its development, MTComm’s performance and feasibility were evaluated with experiments in a CPMC testbed with three different types of manufacturing machine tools. Experimental results demonstrated MTComm’s excellent feasibility for scalable cyber-physical manufacturing and superior performance over other existing approaches
    corecore