2,700 research outputs found

    Composite materials for rail transit systems

    Get PDF
    The potential is explored for using composite materials in urban mass transit systems. The emphasis was to identify specific advantages of composite materials in order to determine their actual and potential usage for carbody and guideway structure applications. The literature was reviewed, contacts were made with major domestic system operators, designers, and builders, and an analysis was made of potential composite application to railcar construction. Composites were found to be in use throughout the transit industry, usually in secondary or auxiliary applications such as car interior and nonstructural exterior panels. More recently, considerable activity has been initiated in the area of using composites in the load bearing elements of civil engineering structures such as highway bridges. It is believed that new and improved manufacturing refinements in pultrusion and filament winding will permit the production of beam sections which can be used in guideway structures. The inherent corrosion resistance and low maintenance characteristics of composites should result in lowered maintenance costs over a prolonged life of the structure

    Solar energy in buildings: Implications for California energy policy

    Get PDF
    An assessment of the potential of active solar energy systems for buildings in California is summarized. The technology used for solar heating, cooling, and water heating in buildings is discussed. The major California weather zones and the solar energy designs are described, as well as the sizing of solar energy systems and their performance. The cost of solar energy systems is given both at current prices and at prices consistent with optimistic estimates for the cost of collectors. The main institutional barriers to the wide spread use of solar energy are summarized

    INDUSTRIAL DEVICE INTEGRATION AND VIRTUALIZATION FOR SMART FACTORIES

    Get PDF
    Given the constant industry growth and modernization, several technologies have been introduced in the shop floor, in particular regarding industrial devices. Each device brand and model usually requires different interfaces and communication protocols, a technological diversity which renders the automatic interconnection with production management software extremely challenging. However, combining key technologies such as machine monitoring, digital twin and virtual commissioning, along with a complete communication protocol like OPC UA, it is possible to contribute towards industrial device integration on a Smart Factory environment. To achieve this goal, several methodologies and a set of tools were defined. This set of tools, as well as facilitating the integration tasks, should also be part of a virtual engineering environment, sharing the same virtual model, the digital twin, through the complete lifecycle of the industrial device, namely the project, simulation, implementation and execution/monitoring/supervision and, eventually, decommissioning phases. A key result of this work is the development of a set of virtual engineering tools and methodologies based on OPC UA communication, with the digital twin implemented using RobotStudio, in order to accomplish the complete lifecycle support of an industrial device, from the project and simulation phases, to monitoring and supervision, suitable for integration in Industry 4.0 factories. To evaluate the operation of the developed set of tools, experiments were performed for a test scenario with different devices. Other relevant result is related with the integration of a specific industrial device – CNC machining equipment. Given the variety of monitoring systems and communication protocols, an approach where various solutions available on the market are combined on a single system is followed. These kinds of all-in-one solutions would give production managers access to the information necessary for a continuous monitoring and improvement of the entire production process

    Building a Simple Smart Factory

    Get PDF
    This thesis describes (a) the search and findings of smart factories and their enabling technologies (b) the methodology to build or retrofit a smart factory and (c) the building and operation of a simple smart factory using the methodology. A factory is an industrial site with large buildings and collection of machines, which are operated by persons to manufacture goods and services. These factories are made smart by incorporating sensing, processing, and autonomous responding capabilities. Developments in four main areas (a) sensor capabilities (b) communication capabilities (c) storing and processing huge amount of data and (d) better utilization of technology in management and further development have contributed significantly for this incorporation of smartness to factories. There is a flurry of literature in each of the above four topics and their combinations. The findings from the literature can be summarized in the following way. Sensors detect or measure a physical property and records, indicates, or otherwise responds to it. In real-time, they can make a very large amount of observations. Internet is a global computer network providing a variety of information and communication facilities and the internet of things, IoT, is the interconnection via the Internet of computing devices embedded in everyday objects, enabling them to send and receive data. Big data handling and the provision of data services are achieved through cloud computing. Due to the availability of computing power, big data can be handled and analyzed under different classifications using several different analytics. The results from these analytics can be used to trigger autonomous responsive actions that make the factory smart. Having thus comprehended the literature, a seven stepped methodology for building or retrofitting a smart factory was established. The seven steps are (a) situation analysis where the condition of the current technology is studied (b) breakdown prevention analysis (c) sensor selection (d) data transmission and storage selection (e) data processing and analytics (f) autonomous action network and (g) integration with the plant units. Experience in a cement factory highlighted the wear in a journal bearing causes plant stoppages and thus warrant a smart system to monitor and make decisions. The experience was used to develop a laboratory-scale smart factory monitoring the wear of a half-journal bearing. To mimic a plant unit a load-carrying shaft supported by two half-journal bearings were chosen and to mimic a factory with two plant units, two such shafts were chosen. Thus, there were four half-journal bearings to monitor. USB Logitech C920 webcam that operates in full-HD 1080 pixels was used to take pictures at specified intervals. These pictures are then analyzed to study the wear at these intervals. After the preliminary analysis wear versus time data for all four bearings are available. Now the ‘making smart activity’ begins. Autonomous activities are based on various analyses. The wear time data are analyzed under different classifications. Remaining life, wear coefficient specific to the bearings, weekly variation in wear and condition of adjacent bearings are some of the characteristics that can be obtained from the analytics. These can then be used to send a message to the maintenance and supplies division alerting them on the need for a replacement shortly. They can also be alerted about other bearings reaching their maturity to plan a major overhaul if needed

    Mitigating Diminishing Manufacturing Sources/Material Shortages (DMS/MS) and Obsolescence for the T-6 Canopy Fracturing Initiation System (CFIS)

    Get PDF
    The Joint Primary Aircraft Training System (JPATS) lost the supplier for its canopy fracturing initiation system (CFIS) with no prospect for a replacement. This forced a complete CFIS redesign to supply both an active production line and sustain fielded aircraft. Compounding the problem, the existing CFIS became obsolete, which forced an interim design to be produced until a final long term solution was fielded. This thesis developed a method to optimize the redesign by determining the lowest cost path for both fielding the interim design and phasing in the final retrofit. Using the Excel Solver® modeling program, an optimal rate was found to expedite interim design introduction and fleet changeover to the final design. The analysis concluded that using achievable stretch goals, existing production capacity could be adjusted to field the final configuration at the lowest cost

    Proceedings of the 10th International congress on architectural technology (ICAT 2024): architectural technology transformation.

    Get PDF
    The profession of architectural technology is influential in the transformation of the built environment regionally, nationally, and internationally. The congress provides a platform for industry, educators, researchers, and the next generation of built environment students and professionals to showcase where their influence is transforming the built environment through novel ideas, businesses, leadership, innovation, digital transformation, research and development, and sustainable forward-thinking technological and construction assembly design

    JT8D and JT9D jet engine performance improvement program. Task 1: Feasibility analysis

    Get PDF
    JT8D and JT9D component performance improvement concepts which have a high probability of incorporation into production engines were identified and ranked. An evaluation method based on airline payback period was developed for the purpose of identifying the most promising concepts. The method used available test data and analytical models along with conceptual/preliminary designs to predict the performance improvements, weight, installation characteristics, cost for new production and retrofit, maintenance cost, and qualitative characteristics of candidate concepts. These results were used to arrive at the concept payback period, which is the time required for an airline to recover the investment cost of concept implementation

    Advanced General Aviation Turbine Engine (GATE) concepts

    Get PDF
    Concepts are discussed that project turbine engine cost savings through use of geometrically constrained components designed for low rotational speeds and low stress to permit manufacturing economies. Aerodynamic development of geometrically constrained components is recommended to maximize component efficiency. Conceptual engines, airplane applications, airplane performance, engine cost, and engine-related life cycle costs are presented. The powerplants proposed offer encouragement with respect to fuel efficiency and life cycle costs, and make possible remarkable airplane performance gains
    • …
    corecore