173 research outputs found

    Experimental Analysis of the Effects of Manipulations in Weighted Voting Games

    Get PDF
    Weighted voting games are classic cooperative games which provide compact representation for coalition formation models in human societies and multiagent systems. As useful as weighted voting games are in modeling cooperation among players, they are, however, not immune from the vulnerability of manipulations (i.e., dishonest behaviors) by strategic players that may be present in the games. With the possibility of manipulations, it becomes difficult to establish or maintain trust, and, more importantly, it becomes difficult to assure fairness in such games. For these reasons, we conduct careful experimental investigations and analyses of the effects of manipulations in weighted voting games, including those of manipulation by splitting, merging, and annexation . These manipulations involve an agent or some agents misrepresenting their identities in anticipation of gaining more power or obtaining a higher portion of a coalition\u27s profits at the expense of other agents in a game. We consider investigation of some criteria for the evaluation of game\u27s robustness to manipulation. These criteria have been defined on the basis of theoretical and experimental analysis. For manipulation by splitting, we provide empirical evidence to show that the three prominent indices for measuring agents\u27 power, Shapley-Shubik, Banzhaf, and Deegan-Packel, are all susceptible to manipulation when an agent splits into several false identities. We extend a previous result on manipulation by splitting in exact unanimity weighted voting games to the Deegan-Packel index, and present new results for excess unanimity weighted voting games. We partially resolve an important open problem concerning the bounds on the extent of power that a manipulator may gain when it splits into several false identities in non-unanimity weighted voting games. Specifically, we provide the first three non-trivial bounds for this problem using the Shapley-Shubik and Banzhaf indices. One of the bounds is also shown to be asymptotically tight. Furthermore, experiments on non-unanimity weighted voting games show that the three indices are highly susceptible to manipulation via annexation while they are less susceptible to manipulation via merging. Given that the problems of calculating the Shapley-Shubik and Banzhaf indices for weighted voting games are NP-complete, we show that, when the manipulators\u27 coalitions sizes are restricted to a small constant, manipulators need to do only a polynomial amount of work to find a much improved power gain for both merging and annexation, and then present two enumeration-based pseudo-polynomial algorithms that manipulators can use. Finally, we argue and provide empirical evidence to show that despite finding the optimal beneficial merge is an NP-hard problem for both the Shapley-Shubik and Banzhaf indices, finding beneficial merge is relatively easy in practice. Also, while it appears that we may be powerless to stop manipulation by merging for a given game, we suggest a measure, termed quota ratio, that the game designer may be able to control. Thus, we deduce that a high quota ratio decreases the number of beneficial merges

    False-Name Manipulation in Weighted Voting Games is Hard for Probabilistic Polynomial Time

    Full text link
    False-name manipulation refers to the question of whether a player in a weighted voting game can increase her power by splitting into several players and distributing her weight among these false identities. Analogously to this splitting problem, the beneficial merging problem asks whether a coalition of players can increase their power in a weighted voting game by merging their weights. Aziz et al. [ABEP11] analyze the problem of whether merging or splitting players in weighted voting games is beneficial in terms of the Shapley-Shubik and the normalized Banzhaf index, and so do Rey and Rothe [RR10] for the probabilistic Banzhaf index. All these results provide merely NP-hardness lower bounds for these problems, leaving the question about their exact complexity open. For the Shapley--Shubik and the probabilistic Banzhaf index, we raise these lower bounds to hardness for PP, "probabilistic polynomial time", and provide matching upper bounds for beneficial merging and, whenever the number of false identities is fixed, also for beneficial splitting, thus resolving previous conjectures in the affirmative. It follows from our results that beneficial merging and splitting for these two power indices cannot be solved in NP, unless the polynomial hierarchy collapses, which is considered highly unlikely

    Algorithmic and complexity aspects of simple coalitional games

    Get PDF
    Simple coalitional games are a fundamental class of cooperative games and voting games which are used to model coalition formation, resource allocation and decision making in computer science, artificial intelligence and multiagent systems. Although simple coalitional games are well studied in the domain of game theory and social choice, their algorithmic and computational complexity aspects have received less attention till recently. The computational aspects of simple coalitional games are of increased importance as these games are used by computer scientists to model distributed settings. This thesis fits in the wider setting of the interplay between economics and computer science which has led to the development of algorithmic game theory and computational social choice. A unified view of the computational aspects of simple coalitional games is presented here for the first time. Certain complexity results also apply to other coalitional games such as skill games and matching games. The following issues are given special consideration: influence of players, limit and complexity of manipulations in the coalitional games and complexity of resource allocation on networks. The complexity of comparison of influence between players in simple games is characterized. The simple games considered are represented by winning coalitions, minimal winning coalitions, weighted voting games or multiple weighted voting games. A comprehensive classification of weighted voting games which can be solved in polynomial time is presented. An efficient algorithm which uses generating functions and interpolation to compute an integer weight vector for target power indices is proposed. Voting theory, especially the Penrose Square Root Law, is used to investigate the fairness of a real life voting model. Computational complexity of manipulation in social choice protocols can determine whether manipulation is computationally feasible or not. The computational complexity and bounds of manipulation are considered from various angles including control, false-name manipulation and bribery. Moreover, the computational complexity of computing various cooperative game solutions of simple games in dierent representations is studied. Certain structural results regarding least core payos extend to the general monotone cooperative game. The thesis also studies a coalitional game called the spanning connectivity game. It is proved that whereas computing the Banzhaf values and Shapley-Shubik indices of such games is #P-complete, there is a polynomial time combinatorial algorithm to compute the nucleolus. The results have interesting significance for optimal strategies for the wiretapping game which is a noncooperative game defined on a network

    Structural Control in Weighted Voting Games

    Get PDF
    Inspired by the study of control scenarios in elections and complementing manipulation and bribery settings in cooperative games with transferable utility, we introduce the notion of structural control in weighted voting games. We model two types of influence, adding players to and deleting players from a game, with goals such as increasing a given player\u27s Shapley-Shubik or probabilistic Penrose-Banzhaf index in relation to the original game. We study the computational complexity of the problems of whether such structural changes can achieve the desired effect

    Algorithmic and complexity aspects of simple coalitional games

    Get PDF
    Simple coalitional games are a fundamental class of cooperative games and voting games which are used to model coalition formation, resource allocation and decision making in computer science, artificial intelligence and multiagent systems. Although simple coalitional games are well studied in the domain of game theory and social choice, their algorithmic and computational complexity aspects have received less attention till recently. The computational aspects of simple coalitional games are of increased importance as these games are used by computer scientists to model distributed settings. This thesis fits in the wider setting of the interplay between economics and computer science which has led to the development of algorithmic game theory and computational social choice. A unified view of the computational aspects of simple coalitional games is presented here for the first time. Certain complexity results also apply to other coalitional games such as skill games and matching games. The following issues are given special consideration: influence of players, limit and complexity of manipulations in the coalitional games and complexity of resource allocation on networks. The complexity of comparison of influence between players in simple games is characterized. The simple games considered are represented by winning coalitions, minimal winning coalitions, weighted voting games or multiple weighted voting games. A comprehensive classification of weighted voting games which can be solved in polynomial time is presented. An efficient algorithm which uses generating functions and interpolation to compute an integer weight vector for target power indices is proposed. Voting theory, especially the Penrose Square Root Law, is used to investigate the fairness of a real life voting model. Computational complexity of manipulation in social choice protocols can determine whether manipulation is computationally feasible or not. The computational complexity and bounds of manipulation are considered from various angles including control, false-name manipulation and bribery. Moreover, the computational complexity of computing various cooperative game solutions of simple games in dierent representations is studied. Certain structural results regarding least core payos extend to the general monotone cooperative game. The thesis also studies a coalitional game called the spanning connectivity game. It is proved that whereas computing the Banzhaf values and Shapley-Shubik indices of such games is #P-complete, there is a polynomial time combinatorial algorithm to compute the nucleolus. The results have interesting significance for optimal strategies for the wiretapping game which is a noncooperative game defined on a network.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Detecting Political Framing Shifts and the Adversarial Phrases within\\ Rival Factions and Ranking Temporal Snapshot Contents in Social Media

    Get PDF
    abstract: Social Computing is an area of computer science concerned with dynamics of communities and cultures, created through computer-mediated social interaction. Various social media platforms, such as social network services and microblogging, enable users to come together and create social movements expressing their opinions on diverse sets of issues, events, complaints, grievances, and goals. Methods for monitoring and summarizing these types of sociopolitical trends, its leaders and followers, messages, and dynamics are needed. In this dissertation, a framework comprising of community and content-based computational methods is presented to provide insights for multilingual and noisy political social media content. First, a model is developed to predict the emergence of viral hashtag breakouts, using network features. Next, another model is developed to detect and compare individual and organizational accounts, by using a set of domain and language-independent features. The third model exposes contentious issues, driving reactionary dynamics between opposing camps. The fourth model develops community detection and visualization methods to reveal underlying dynamics and key messages that drive dynamics. The final model presents a use case methodology for detecting and monitoring foreign influence, wherein a state actor and news media under its control attempt to shift public opinion by framing information to support multiple adversarial narratives that facilitate their goals. In each case, a discussion of novel aspects and contributions of the models is presented, as well as quantitative and qualitative evaluations. An analysis of multiple conflict situations will be conducted, covering areas in the UK, Bangladesh, Libya and the Ukraine where adversarial framing lead to polarization, declines in social cohesion, social unrest, and even civil wars (e.g., Libya and the Ukraine).Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Between Coloniality And Transmodernity:latino/a Fictional Responses To U.s. Interventionism In Latin America

    Get PDF
    Abstract: This work focuses on four novels: The Americano (1963) by Enrique G. Matta, AmĂ©rica’s Dream (1996) by Esmeralda Santiago, Caramelo or Puro Cuento: A novel (2002) by Sandra Cisneros, and The Brief Wondrous Life of Oscar Wao (2007) by Junot DĂ­az. These novels share a history of U.S. interventionism, which has not only affected the inhabitants of Mexico, the Dominican Republic, and Puerto Rico, still a colony of the U.S., but also the lives of their population that now reside in the U.S. mainland. As Latino Studies Scholar Juan Flores has explained, many Latinos/as in the U.S. “migrated here for both political and economic reasons, in part because of the U.S. intervention in their homelands” (Flores 199). This interventionism operated on the basis of coloniality of power. This expression, created by Peruvian sociologist Anibal Quijano, refers to the way power operates in places where essentialist colonial categories of class and race prevail. Walter Mignolo links Quijano’s notion of coloniality to global socio-historical developments since the conquest of the Americas, so that one can talk of a modern/colonial world system. In the same manner, Argentinean scholar Enrique Dussel criticizes the Eurocentric category of “modernity” with its emphasis on only one intra-European line of historical development and he calls for a “transmodern project”; the effort to include the positions and perspectives of those on the periphery who were erased from Eurocentric accounts. These peripheral accounts are portrayed in these novels through their re-telling of history, their notions of spirituality, their view of their colonizer, the search for parity, the role of violence, and the use of English and Spanish simultaneously in bilingual writing, while establishing a link between the history of U.S. interventionism and the lives of Latino/as in the U.S
    • 

    corecore