3,384 research outputs found

    Optical Signal Processing for Manipulating and Characterizing Time-Frequency Entangled Photons.

    Get PDF
    Time-frequency entangled photons ( biphotons ) exhibit joint spectral and temporal correlations that are unattainable with classical light. Besides being deployed for tests of quantum nonlocality, these photonic states are desirable for a unique range of applications that can significantly impact communications and computation. In this dissertation, we describe novel schemes based on spectral and temporal domain processing for manipulating and characterizing broadband biphotons. Implementing frequency-dependent filters, first, we present and demonstrate a technique for controlling the relative delay between a pair of entangled photons, relying on pump frequency tuning and the quantum concept of nonlocal dispersion cancellation. Next, we demonstrate near-field frequency-to-time mapping, a technique adopted from classical photonics, for arbitrary control of biphoton temporal correlations. Subsequently, we generate temporal correlation trains by creating biphoton frequency combs through programmable spectral amplitude shaping and demonstrate the temporal Talbot effect with entangled photons for the first time. Moreover, in the absence of fast single-photon detectors, we show how electro-optic phase modulation (originally a time-dependent operation) can be used to examine the coherence of biphoton frequency combs. Lastly, we introduce a scheme based on electro-optic intensity modulation, another time-domain operation, for improving the resolution in biphoton temporal correlation measurements. Overall, our body of work could provide additional insight into the manipulation and characterization of biphoton states, as well as contribute towards the improvement of quantum technologies

    Probing dynamical symmetry breaking using quantum-entangled photons

    Full text link
    We present an input/output analysis of photon-correlation experiments whereby a quantum mechanically entangled bi-photon state interacts with a material sample placed in one arm of a Hong-Ou-Mandel (HOM) apparatus. We show that the output signal contains detailed information about subsequent entanglement with the microscopic quantum states in the sample. In particular, we apply the method to an ensemble of emitters interacting with a common photon mode within the open-system Dicke Model. Our results indicate considerable dynamical information concerning spontaneous symmetry breaking can be revealed with such an experimental system

    A versatile source of polarisation entangled photons for quantum network applications

    Get PDF
    We report a versatile and practical approach for generating high-quality polarization entanglement in a fully guided-wave fashion. Our setup relies on a high-brilliance type-0 waveguide generator producing paired photon at a telecom wavelength associated with an advanced energy-time to polarisation transcriber. The latter is capable of creating any pure polarization entangled state, and allows manipulating single photon bandwidths that can be chosen at will over five orders of magnitude, ranging from tens of MHz to several THz. We achieve excellent entanglement fidelities for particular spectral bandwidths, i.e. 25 MHz, 540 MHz and 100 GHz, proving the relevance of our approach. Our scheme stands as an ideal candidate for a wide range of network applications, ranging from dense division multiplexing quantum key distribution to heralded optical quantum memories and repeaters.Comment: 5 figure

    Synthesis and Analysis of Entangled Photonic Qubits in Spatial-Parity Space

    Full text link
    We present the novel embodiment of a photonic qubit that makes use of one continuous spatial degree of freedom of a single photon and relies on the the parity of the photon's transverse spatial distribution. Using optical spontaneous parametric downconversion to produce photon pairs, we demonstrate the controlled generation of entangled-photon states in this new space. Specifically, two Bell states, and a continuum of their superpositions, are generated by simple manipulation of a classical parameter, the optical-pump spatial parity, and not by manipulation of the entangled photons themselves. An interferometric device, isomorphic in action to a polarizing beam splitter, projects the spatial-parity states onto an even--odd basis. This new physical realization of photonic qubits could be used as a foundation for future experiments in quantum information processing.Comment: 6 pages, 5 figures, submitted to PR

    Generation of maximally entangled states of qudits using twin photons

    Full text link
    We report an experiment to generate maximally entangled states of D-dimensional quantum systems, qudits, by using transverse spatial correlations of two parametric down-converted photons. Apertures with D-slits in the arms of the twin fotons define the qudit space. By manipulating the pump beam correctly the twin photons will pass only by symmetrically opposite slits, generating entangled states between these differents paths. Experimental results for qudits with D=4 and D=8 are shown. We demonstrate that the generated states are entangled states.Comment: 04 pages, 04 figure
    • …
    corecore